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Abstract. In this paper, we develop a Multilayer (ML) method for solving

one-factor parabolic equations. Our approach provides a powerful alternative
to the well-known finite difference and Monte Carlo methods. We discuss var-

ious advantages of this approach, which judiciously combines semi-analytical

and numerical techniques and provides a fast and accurate way of finding solu-
tions to the corresponding equations. To introduce the core of the method, we

consider multilayer heat equations, known in physics for a relatively long time

but never used when solving financial problems. Thus, we expand the ana-
lytic machinery of quantitative finance by augmenting it with the ML method.

We demonstrate how one can solve various problems of mathematical finance

by using our approach. Specifically, we develop efficient algorithms for pric-
ing barrier options for time-dependent one-factor short-rate models, such as

Black-Karasinski and Verhulst. Besides, we show how to solve the well-known
Dupire equation quickly and accurately. Numerical examples confirm that our

approach is considerably more efficient for solving the corresponding partial

differential equations than the conventional finite difference method by being
much faster and more accurate than the known alternatives.

Introduction. The problem of solving partial differential equations (PDEs) with
moving boundaries appears naturally in various areas of science and technology.
As mentioned in [29], such problems have been known in physics for a long time.
They arise in several fields, such as (a) nuclear power engineering and safety of
nuclear reactors; (b) combustion in solid-propellant rocket engines; (c) laser action
on solids; (d) the theory of phase transitions (the Stefan problem and the Verigin
problem); (e) the processes of sublimation in freezing and melting; (f) in the kinetic
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theory of crystal growth; etc., see [28] and references therein. Analytical solutions
to these problems often require rather sophisticated methods, which were actively
developed by the Russian mathematical school in the 20th century starting from
A.V. Luikov, and then by B.Ya. Lyubov, E.M. Kartashov, and many others.

As applied to mathematical finance, one of these methods - the method of heat
potentials (HP) - was actively utilized by A. Lipton and his co-authors to solve
various mathematical finance problems, see [34, 35] and references therein. A
complementary method of a generalized integral transform (GIT) is developed in
[10, 27, 11] to price barrier and American options in the semi-closed form. These
authors studied the time-dependent Ornstein-Uhlenbeck (OU), Hull-White, CIR,
and CEV models. An extension of the method of heat potentials for the Bessel
process called the method of Bessel potentials is developed by [11], who also de-
scribe a general scheme of how to construct the potential method for any linear
differential operator with time-independent coefficients. Finally, they also extended
the method of generalized integral transform to the Bessel process. In all cases, a
semi-analytical (or semi-closed form) solution means that first, one needs to solve
a linear Volterra equation of the second kind. Then the option price is represented
as a one-dimensional integral.

[10, 27, 11] show that the new method is computationally more efficient than
the existing ones, such as the backward and forward finite difference methods while
providing better accuracy and stability. Also, the heat potential and GIT methods
do not duplicate but rather complement each other. The former provides very
accurate results for short maturities, and the latter for long maturities.

Even though many new problems have been solved in the above-cited papers,
some of the financial models are hard to solve by using these methods directly. For
instance, this is the case for the Black-Karasinski model, popular among practition-
ers. Another problem is the calibration of the local (or implied) volatility surface in
various one-factor models. Almost all popular analytic and semi-analytical methods
approach the solution of this problem by doing it term-by-term, which, doubtless,
produces computational errors. For more details, see [23] and references therein.

In this paper, we attack this class of problems (some of them unsolved in the semi-
analytical form) by using another method, which we call the method of multilayer
(ML) heat equation. An alternative approach is given in [15], where an innovative
technique of recursive images is presented to obtain solutions to the transient diffu-
sion equation in a N -layered material based on the superposition of Green functions
for a semi-infinite material. The solution is initially built for a single layer over a
substrate by constructing a sequential sum of reflected image functions. These func-
tions are chosen to satisfy in sequence the boundary conditions, first at the front
interface, then at the back interface, then again at the front interface, and so on
until the added functions’ magnitude becomes negligible.

Based on this so-called “1-layer” algorithm, the author also constructs a “2-layer”
algorithm by sequential application of the “1-layer” algorithm first to layer 1, then
to layer 2, then again to layer 1, and so on. The sequential application of the N − 1
algorithm naturally leads to the N -layer algorithm. This scheme works for the first
and second kind boundary conditions but does not apply to the case where there
is a contact resistance between layers or the convective heat transfer at the end
interfaces.

Note that this algorithm as applied to the local volatility calibration problem is
similar to the approach used in [38, 24, 9, 8].
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Since the ML method splits the whole (possibly infinite) domain in the space
variable into a sequence of sub-domains, one could extend it naturally to solving
parabolic equations with coefficients being functions of time t and location x. At
every sub-interval, the corresponding parabolic operator could be either approxi-
mated by the operator with the space-homogeneous coefficients or, possibly, reduced
to the heat equation by a series of transformations. After either approximation or
reduction, the ML method can be applied.

Moreover, the method could be extended further to deal with non-linear volatility,
drift, and killing term. Again, piecewise approximations of these terms lead to the
parabolic equations at every sub-interval that could be transformed to the heat
equation. Then, the application of the ML method solves the problem.

The main idea of this paper is to combine the ML method with the method of
heat potentials 1 and the GIT method. Since both provide a semi-analytical so-
lution for sub-interval problems, a combination of these solutions within the ML
heat equation method results in the problem’s full solution, expressed explicitly via
one-dimensional integrals. At each layer, these integrals depend either on the yet
unknown potential density (in the HP method) or on the solution gradient at the
layer’s boundaries (the GIT method). These unknown functions solve the intercon-
nected systems of the integral Volterra equations of the second kind derived in the
paper. Once this solution is found (either numerically or, sometimes, analytically),
the whole problem is solved. Note that one can transform the system of integral
equations to linear equations on a time-space grid, which is lower banded (in our
case, block lower triangular). Therefore, the corresponding system can be solved
with complexity O(M2N) where N is the number of layers, and M is the number
of time steps, see [27] in more detail.

We also propose a particular construction of the layers’ internal boundaries,
which allows the representation of every integral in the Volterra equation as convo-
lution. Applying the Laplace transform, we obtain a system of linear equations with
a block-tridiagonal matrix (it contains four blocks). This system can be efficiently
solved numerically (with complexity O(N)). In some cases, it can be solved analyt-
ically. After this system’s solution is found, we use the Gaver-Stehfest method to
compute the inverse Laplace transform, also with linear complexity in the number
of layers N . This algorithm solves the system of the Volterra equations and thus
the whole problem.

We illustrate these novel ideas by representing several significant financial prob-
lems in the form suitable for solving them by the ML method. These problems
include pricing barrier options in the time-dependent Black-Karasinski and mod-
ified Black-Karasinski (Verhulst) models, see [25], as well as the solution of the
Dupire equation. We also provide several numerical examples to demonstrate our
method’s high speed and accuracy compared with standard finite-difference (FD)
methods.

To the best of our knowledge, all the paper results are new and contribute to the
existing financial and physics literature. It is interesting to note that our method is
capable of solving similar problems that appear in medicine and biology in addition
to finance. For instance, our technique is well-suited for studying (a) the growth of
diffusive brain tumors, which considers the brain tissue’s heterogeneity, [4]; (b) the
transdermal drug release from an iontophoretic system, [43]; (c) and many other

1More general potential methods, e.g., the method of Bessel potentials, can also be used in
such a scheme.
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similar problems. It is imperative to emphasize that our method allows solving
the ML problems with time-dependent boundaries and time- and space-dependent
diffusion coefficients. In contrast, the method of [12] and all other known approaches
operate only with constant boundaries (possibly with time-dependent boundary
conditions) and spatially piecewise constant diffusion coefficients. Moreover, their
setting corresponds to one of our numerical examples in Section 5. Since in [12]
the solution is obtained by using spectral (eigenvector) series, while we apply the
Laplace transform method, our approach is about 1000 times faster.

The rest of the paper is organized as follows. In Section 1 we construct the solu-
tion of the ML heat equation by using the method of heat potentials. In Section 2,
we solve this equation by using the GIT method. In Section 3.1.1 we describe the
pricing of barrier options in the time-dependent Black-Karasinski (BK) model and
also in our modification of this model, which was introduced in [25] and is called
the Verhulst model. In particular, we demonstrate how to reduce the pricing PDEs
for both models to the ML heat equation. Also, in Section 3.1.1 we provide a gen-
eralization of this approach for some other models. In Section 3.2 we apply the
results of Section 2.3 to investigate the case of space-dependent volatility σ(x) in
conjunction with solving the Dupire equation. Section 4 is dedicated to the solution
of the Volterra equations. In particular, we describe a construction of the internal
boundaries, which allows a transformation of the Volterra equations of the second
kind to Abel equations. We solve the latter equations via the Laplace transform.
Section 5 describes some numerical experiments with the ML method. The final
section concludes.

1. Solving the ML heat equation via the HP method. Let us consider the
following initial-boundary problem

Lu(τ, x) = 0, (x, τ) ∈ Ω :
[
y−(τ), y+(τ)

]
× R+, (1)

u(0, x) = f(x), y−(0) < x < y+(0),

u(τ, y−(τ)) = χ−(τ), u(τ, y+(τ)) = χ+(τ).

Here the operator L is a partial differential operator of the parabolic type

L = − ∂

∂τ
+

∂

∂x

(
σ2(τ, x)

∂

∂x

)
+ µ(τ, x)

∂

∂x
+ ν(τ, x), (2)

σ(τ, x), µ(τ, x), ν(τ, x) are some known functions, Ω is the spatial-temporal domain
with curvilinear temporal boundaries, and χ−(τ), χ+(τ) are known functions of time
(the boundary conditions).

Similar to [27], we represent the solution in the form

u(x, τ) = q(x, τ) +

∫ y+(0)

y−(0)

f(ξ)G(x, ξ, τ)dξ, (3)

where G(x, ξ, τ) is Green’s function of the problem. Then the function q(x, τ) solves
a problem similar to Eq.(1) but with the homogeneous initial condition

Lq(τ, x) = 0, (x, τ) ∈ Ω :
[
y−(τ), y+(τ)

]
× R+, (4)

q(0, x) = 0, y−(0) < x < y+(0),

q(τ, y−(τ)) = χ−(τ)−
∫ y+(0)

y−(0)

f(ξ)G(y−(τ), ξ, τ)dξ = φ−(τ),
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q(τ, y+(τ)) = χ+(τ)−
∫ y+(0)

y−(0)

f(ξ)G(y+(τ), ξ, τ)dξ = φ+(τ).

If the Green function G(x, ξ, τ) is known, the problem in Eq.(4) can be solved via
the HP method, [26]. Otherwise, one can apply the ML method as this is described
below.

To use the ML method, suppose the domain Ω could be split into N layers:

Ω =
⋃N
i=1 Ωi, where each layer is a curvilinear strip

Ωi = [yi(τ), yi+1(τ)]× R+, yi(τ) < yi+1(τ), ∀τ > 0, ∀i = 1, . . . , N, (5)

y1(τ) = y−(τ), yN+1(τ) = y+(τ).

Let us seek for the solution of the problem Eq.(4) in the form

u(τ, x) =

N∑
i=1

ui(τ, x)1x−yi(τ)1yi+1(τ)−x, 1x =

{
1, x ≥ 0

0, x < 0,
(6)

and request that both u(τ, x) and its flux are continuous functions of x 2. Using
these conditions at every boundary yi(τ), i = 2, . . . , N together with the boundary
conditions yields the following system of equations

ui(τ, yi+1(τ)) = ui+1(τ, yi+1(τ)), (7)

σ2
i (τ, yi+1(τ))

∂ui
∂x

∣∣∣∣∣
x=yi+1(τ)

= σ2
i+1(τ, yi+1(τ))

∂ui+1

∂x

∣∣∣∣∣
x=yi+1(τ)

, i = 1, . . . , N − 1,

u1(τ, y−(τ)) = χ−(τ), uN+1(τ, y+(τ)) = χ+(τ).

The first condition means a continuity of the function u at every boundary yi, i =
1, . . . , N − 1. The second condition is a continuity of the heat flux at the same
boundary. The last line follows from the boundary conditions in Eq.(4).

Also, let us define the operator L for the whole domain Ω as follows

L =

N∑
i=1

Li1x−yi(τ)1yi+1(τ)−x, (8)

where

Li = − ∂

∂τ
+

∂

∂x

(
σ2
i (τ, x)

∂

∂x

)
+ µi(τ, x)

∂

∂x
+ νi(τ, x), (9)

and Liui = 0.
The idea of the ML method is to assume that Green’s function Gi(x, τ |ξ, s) as-

sociated with the operator Li can be obtained in the closed form. For an arbi-
trary dependencies σi(τ, x), µi(τ, x), νi(τ, x) this is not the case, but for various
specific forms of these functions this can be done. For instance, when µ(τ, x) =
ν(τ, x) = 0 and σ(τ, x) = σ(τ) or σ(τ, x) = σ(x), etc., [42]. Otherwise, the func-
tions σi(τ, x), µi(τ, x), νi(τ, x) can be approximated at every layer, e.g., by piecewise
constant or linear function in x and an arbitrary function of τ , or by piecewise con-
stant functions in τ and piecewise linear functions in x, etc. These approximations
make the ML method somewhat similar to the FD method, however, with some
critical distinctions, see Section 6.

2These conditions are natural in physics if by u(t, x) we assume, e.g., the temperature and
interpret σ2∂xu(t, x) as the heat flux. Therefore, it is standard to require continuity of the heat

flux rather than the first derivative ∂xu(t, x), [33]
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It is important to mention, that the operator Li in Eq.(9), while natural for
physics where a divergent form of the parabolic equation (e.g., the heat equation) is
commonly accepted, is just rarely used in mathematical finance. Instead, in finance
it is natural to consider a non-divergent (non-conservative) form, which for the heat
equation reads

Li = − ∂

∂τ
+ σ2

i (τ, x)
∂2

∂x2
. (10)

Obviously, when σi = σi(τ),∀i, i.e. σi(τ, x) is a straight line at given τ , both
operators in Eq.(9) and Eq.(10) coincide. However, if one solves Eq.(10) by the ML
method, it can be unclear what continuity condition should be used. As shown in
[32], for the divergent heat/diffusion equation with drift this condition remains the
same, i.e. this is a continuity of flux over the boundary. Obviously, a non-divergent
heat equation can be represented in this form, i.e. the divergent diffusion part plus
drift. Therefore, the continuity condition is still represented by the equality of fluxes
over the boundary, but the equation now includes an extra drift term.

As applied to the ML method, this can be seen as follows. Suppose we apply
the ML method to some parabolic equation, and approximate all coefficients in the
drift and killing terms by piecewise constant function at every interval. Then, at
the i-th interval this equation reads

∂ui(τ, x)

∂τ
= σ2(τ, x)

∂2ui(τ, x)

∂x2
+ αi

∂ui(τ, x)

∂x
+ βiui(τ, x),

where αi = const, βi = const, i = 1, N . By transforming it to a divergent form we
obtain

∂ui(τ, x)

∂t
=

∂

∂x

(
σ2(τ, x)

∂ui(τ, x)

∂x

)
+ [αi − 2σ(τ, x)σx(τ, x)]

∂ui(τ, x)

∂x
+ βiui(τ, x).

(11)
Hence, again, the continuity condition for this equation is given in Eq.(7). Further,
Eq.(11) by a series of transformations can be reduced to a non-divergent heat equa-
tion in Eq.(10). Accordingly, these transformations should be applied to Eq.(7) as
well to obtain the correct continuity conditions.

When the external boundaries are constant, i.e. y−(t) = χ−(t) = const, y+(t) =
χ+(t) = const one may use an alternative where a non-divergent heat equation can
be reduced to a divergent one by a change of variables x 7→ y = g(x), where g(x) is
some function which depends on σ2(x). In more detail this is shown in Appendix A.
Accordingly, the operator Eq.(10) transforms to

Li = − ∂

∂τ
+

∂

∂y

(
Ξ2
i (τ, y)

∂

∂y

)
, (12)

where Ξ2(τ, y) is a new diffusion coefficient, which can be expressed via σ(τ, x),
again see Appendix A.

In what follows, we provide our analysis for Eq.(9); Eq.(10) can be analyzed
similarly, as explained above. For simplicity and without loss of generality, we
give an exposition of the HP method assuming µi(τ, x) = νi(τ, x) = 0, and either
σi(τ, x) = σi(τ), or σi(τ, x) is a piecewise constant function of x for every layer.
In this case each equation Liui = 0 by some change of variables τ 7→ τ̄ , x 7→ x̄
can be transformed to the heat equation Eq.(55) with σ2

i (τ̄ , x̄) = 13, [42], and the

3Of course, there exist other possible representations of σi which give rise to the heat equation,
or e.g., to the Bessel equation, [11].
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corresponding Green function G(x̄, ξ, τ̄) reads

G(x̄, ξ, τ̄) =
1

2
√
πτ̄
e−

(x̄−ξ)2
4τ̄ . (13)

Also, these transformations modify the boundary y(τ) 7→ ȳ(τ̄). Some examples
of such transformations are presented in Section 3. In Appendix B we also pro-
vide some recipes on how to proceed if one needs to generalize this approach by
considering a general case σ = σ(τ, x).

To the end of this section, for easiness of reading let us drop the bar over new
variables. Now, following the general idea of the method of heat potentials for
pricing double barrier options, [27, 11], we represent each function qi(τ, x) as

qi(τi, x) =

∫ τi

0

{
Ψi(k)

∂G(x, ξ, τi − k)

∂ξ

∣∣∣∣∣
ξ=yi(k)

+ Φi(k)
∂G(x, ξ, τi − k)

∂ξ

∣∣∣∣∣
ξ=yi+1(k)

}
dk.

(14)

In Eq.(14) the second integral is a sum of two single layer potentials with the
potential densities Ψi(τ) and Φi(τ). By writing Eq.(14) we take into account that
according to Eq.(39) and Eq.(63), the transformed time τ might differ for each
interval, therefore, the notation τi is used. However, e.g., for the problem described
in Section 3.1.1 all new times are equal, i.e. τi = τ, i = 1, . . . , N + 1.

Since the domain Ω consists of N layers, there are 2N unknown density functions
Ψi(τi),Φi(τi), i = 1, . . . , N . To determine them one need to plug the representation
of qi(τi, x) in Eq.(14) into Eq.(7), and then solve thus obtained system of the integral
Volterra equations of the second kind.

However, it is known, [45] that the integral in Eq.(14) for x = yi(τi) and x =
yi+1(τi) is discontinuous, but with the finite value at x = yi(τi)+ε, ∀i = 1, . . . , N+1
when ε→ 0. Then, as shown in [26], Eq.(14) should be represented in the form

qi(τ, yi(τ)) =
1

2σ2
i (yi(τ))

Ψi(τ) +

∫ τ

0

{
Ψi(k)

∂G(yi(τ), ξ, τ − k)

∂ξ

∣∣∣∣∣
ξ=yi(k)

(15)

+ Φi(k)
∂G(yi(τ), ξ, τ − k)

∂ξ

∣∣∣∣∣
ξ=yi+1(k)

}
dk, τ = τi,

qi(τ, yi+1(τ)) = − 1

2σ2
i (yi+1(τ))

Φi(τ) +

∫ τ

0

{
Ψi(k)

∂G(yi+1(τ), ξ, τ − k)

∂ξ

∣∣∣∣∣
ξ=yi(k)

+ Φi(k)
∂G(yi+1(τ), ξ, τ − k)

∂ξ

∣∣∣∣∣
ξ=yi+1(k)

}
dk, τ = τi+1.

The gradients of qi(τ, x) for the heat equation with σi = σ = const have been
derived first in [36, 37], and later in [26] by using a different method4. The result
reads

∂qi(τ, x)

∂x

∣∣∣∣∣
x=yi(τ)

= −Ψi(τ)

2σ3

(
1√
πτ

+
y′i(τ)

σ

)
+

∫ τ

0

Ψi(k)e
− (yi(τ)−yi(k))2

4σ2(τ−k) −Ψi(τ)

4σ3
√
π(τ − k)3

dk

−
∫ τ

0

Ψi(k)
(yi(τ)− yi(k))2e

− (yi(τ)−yi(k))2

4σ2(τ−k)

8σ5
√
π(τ − k)5

dk

4These results can be naturally generalized for the case σ = σ(x).
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−
∫ τ

0

Φi(k)
∂2G(x, ξ, σ2(τ − k))

∂ξ∂x

∣∣∣∣∣ξ=yi+1(k)
x=yi(τ)

dk, τ = τi, (16)

∂qi(τ, x)

∂x

∣∣∣∣∣
x=yi+1(τ)

= −
∫ τ

0

Ψi(k)
∂2G(x, ξ, σ2(τ − k))

∂ξ∂x

∣∣∣∣∣ ξ=yi(k)
x=yi+1(τ)

dk

− Φi(τ)

2σ3

(
1√
πτ
−
y′i+1(τ)

σ

)

+

∫ τ

0

Φi(k)e
− (yi+1(τ)−yi+1(k))2

4σ2(τ−k) − Φi(τ)

4σ3
√
π(τ − k)3

dk

−
∫ τ

0

Φi(k)
(yi+1(τ)− yi+1(k))2e

− (yi+1(τ)−yi+1(k))2

4σ2(τ−k)

8σ5
√
π(τ − k)5

dk, τ = τi+1,

where G(x, ξ, τ) is given in Eq.(13).

2. Solving the ML heat equation via the GIT method.

2.1. Background. An alternative method to construct the ML problem solution
is generalized integral transform (GIT). The GIT method is used in physics, [28,
29], but was unknown in finance until its first use in [10]. The previously known
solution to the heat equation, using the GIT method, was obtained only for the
domain S ∈ [0, y(t)]. For other domains, the solution was unknown even in physics.
[27] were the first to construct the GIT solution for the domain S ∈ [y(t),∞).
The latter technique was extended further for the CIR and CEV models, [11], the
Black-Karasinski model, [25], and finally for double barrier options in [26]. The
latter problem deals with the spatial domain determined by two moving in time
boundaries, and boundary conditions, which are arbitrary functions of time.

The GIT and HP methods are similar but have an essential difference. In the
HP method, the solution is represented in the form of heat potential with the
unknown potential density function Ψ(τ) which solves the corresponding Volterra
equation of the second kind, see Section 1. In the GIT method, similar to, e.g., the
Fourier method, we start with applying some integral transform to the PDE under
consideration. The transform has to be such that the transformed equation with
x 7→ p is solvable analytically in time. The second step is to construct an inverse
transform, which could be computed analytically using the complex analysis. If this
is possible, then the solution can be represented as an explicit integral of some kernel
multiplied by the unknown function Ω(τ). Hence, this looks pretty similar to the
HP method. However, the function Ω(τ) has now a transparent meaning - this is the
gradient of the solution at the moving boundary. It turns out that this gradient also
solves a Volterra equation of the second kind. As mentioned, explicit construction
of such forward and inverse transforms is performed in [10, 27, 11, 25, 26] for various
models and spatial domains. Also, the authors show that the performance of both
methods is the same. Both HP and GIT methods are faster than the finite-difference
approach and provide higher accuracy.

As mentioned in [26], it is not unreasonable to ask why we need two methods -
the HP and GIT, which are used to solve the same problem and demonstrate the
same performance. The answer is interesting. As shown in [11], the GIT method
produces very accurate results at high strikes and maturities (i.e., when the option
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price is relatively small), in contrast to the HP method, which struggles under
these circumstances. One can verify this fact by looking at the exponents under the
GIT solution integral proportional to the time τ . Contrary, when the price is higher
(short maturities, low strikes), the GIT method is slightly less accurate than the HP
method since the exponents in the HP solution integral are inversely proportional
to τ .

Thus, the GIT and HP methods complement each other for the CIR and CEV
models. For other models reducible to the heat equation, the same conclusion holds;
see [27]. This statement is true because GIT integrals contain the difference of two
exponents, which becomes small at large τ . On the contrary, the HP exponent
tends to one at large τ . Therefore, the convergence properties of the two methods
are different at large τ , so they complement each other.

This situation is well known for the heat equation with constant coefficients, [34].
There exist two representations of the solution: one - obtained by using the method
of images, and the other one - by the Fourier series. Although both solutions are
equal when considered as infinite series, their convergence properties are different.

2.2. Solution of the heat equation. To apply the GIT method to the solution
of Eq.(1), we can use the results obtained in [27]. There it is assumed that Li is
the heat equation operator

Li = − ∂

∂τ
+

∂2

∂x2
, (17)

and then the solution of Eq.(1) can be represented in the form

ui(τ, x) =

∞∑
n=−∞

{∫ yi+1(0)

yi(0)

ui(0, ξ)Υn,i(x, τ | ξ, 0)dξ (18)

+

∫ τ

0

[
Ωi(s) + χ+

i (s)y′i+1(s)
]

Υn,i(x, τ |yi+1(s), s)ds

+

∫ τ

0

[
Θi(s)− χ−i (s)y′i(s)

]
Υn,i(x, τ | yi(s), s)ds

+

∫ τ

0

χ−i (s)Λn,i(x, τ | yi(s), s)− χ+
i (s)Λn,i(x, τ | yi+1(s), s)ds

}
,

Υn,i(x, τ | ξ, s) =
1

2
√
π(τ − s)

[
e−

(2nli(τ)+x−ξ)2
4(τ−s) − e−

(2nli(τ)+x+ξ−2yi(τ))2

4(τ−s)

]
,

Λn,i(x, τ | ξ, s) =
x− ξ + 2nli(τ)

4
√
π(τ − s)3

e−
(2nli(τ)+x−ξ)2

4(τ−s)

+
x+ ξ − 2yi(τ) + 2nli(τ)

4
√
π(τ − s)3

e−
(2nli(τ)+x+ξ−2yi(τ))2

4(τ−s) .

Here χ−i (τ), χ+
i (τ) are the boundary conditions at the left and right boundaries

of the i-th interval, and

li(τ) = yi+1(τ)− yi(τ), τ = τi, (19)

Ωi(τ) = −∂ui(τ, x)

∂x

∣∣∣∣∣
x=yi(τ)

Θi(τ) =
∂ui(τ, x)

∂x

∣∣∣∣∣
x=yi+1(τ)

.

The functions Ω(τ),Θ(τ) for the heat equation in Eq.(17) can be found by solving
a system of the Volterra equations of the second kind. As applied to our problem
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for the i-th interval with i ∈ [1, N ], it reads, [26]

−Ωi(τ) =

∫ yi+1(0)

yi(0)

u(0, ξ)υ−i (τ | ξ, 0)dξ (20)

− χ−i (τ)√
πτ

+

∫ τ

0

χ−i (s)− χ−i (τ)

2
√
π(τ − s)3

ds

+

∫ τ

0

[
χ−i (s)d

(
η−i (τ | yi(s), s)

)
− χ+

i (s)d
(
η−i (τ | yi+1(s), s)

)]
−
∫ τ

0

Ωi(s)
yi(τ)− yi(s)
2
√
π(τ − s)3

e−
(yi(τ)−yi(s))

2

4(τ−s) ds

+

∫ τ

0

[
Θi(s)υ

−
i (τ | yi+1(s), s) + Ωi(s)υ

−
0,i(τ | s)

]
ds

Θi(τ) =

∫ yi+1(0)

yi(0)

u(0, ξ)υ+
i (τ | ξ, 0)dξ

+
χ+
i (τ)√
πτ
−
∫ τ

0

χ+
i (s)− χ+

i (τ)

2
√
π(τ − s)3

ds

+

∫ τ

0

[
χ−i (s)d

(
η+
i (τ | yi(s), s)

)
− χ+

i (s)d
(
η+
i (τ | yi+1(s), s)

)]
−
∫ τ

0

Θi(s)
yi+1(τ)− yi+1(s)

2
√
π(τ − s)3

e−
(yi+1(τ)−yi+1(s))2

4(τ−s) ds

+

∫ τ

0

[
Θi(s)υ

+
0,i(τ | s) + Ωi(s)υ

+
i (τ | yi(s), s)

]
ds.

Here the following notation is used

η−i (τ | ξ, s) = −
δξ,yi(s)√
π(τ − s)

+
1√

π(τ − s)

∞∑
n=−∞

e−
(yi(τ)−ξ+2nli(τ))2

4(τ−s) , (21)

η+
i (τ | ξ, s) = −

δξ,yi+1(s)√
π(τ − s)

+
1√

π(τ − s)

∞∑
n=−∞

e−
(yi(τ)−ξ+(2n+1)li(τ))2

4(τ−s) ,

υ−i (τ | ξ, s) = −
∞∑

n=−∞

yi(τ)− ξ + 2nli(τ)

2
√
π(τ − s)3

e−
(yi(τ)−ξ+2nli(τ))2

4(τ−s) ,

υ+
i (τ | ξ, s) = −

∞∑
n=−∞

yi(τ)− ξ + (2n+ 1)li(τ)

2
√
π(τ − s)3

e−
(yi(τ)−ξ+(2n+1)li(τ))2

4(τ−s) ,

υ−0,i(τ | s) = υ−i (τ |yi(s), s) +
yi(τ)− yi(s)
2
√
π(τ − s)3

e−
(yi(τ)−yi(s))

2

4(τ−s) ,

υ+
0,i(τ | s) = υ+

i (τ |yi+1(s), s) +
yi+1(τ)− yi+1(s)

2
√
π(τ − s)3

e−
(yi+1(τ)−yi+1(s))2

4(τ−s) ,

where δξ,x is the Kronecker symbol. It is worth emphasizing that all summands in
Eq.(20) are regular. The integrands in the first two lines have weak (integrable)
singularities, while other summands are regular.

At the boundaries of the domain where the solution of our problem is defined,
we have

χ−1 = χ−, χ−N = χ+, (22)
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where N is the number of intervals.
In [26], an alternative system of the Volterra equations of the second kind is

also obtained, which has the form of Eq.(20), but with a different definition of the
coefficients. We have

η−i (τ | ξ, s) = −
δξ,yi(s)√
π(τ − s)

+
1

li(τ)
θ3 (φi(ξ, yi(τ)), ωi) , (23)

η+
i (τ | ξ, s) = −

δξ,yi+1(s)√
π(τ − s)

+
1

l(τ)
θ3 (φi(ξ + li(τ), yi(τ)), ωi) ,

υ−i (τ | ξ, s) = − π

2l2i (τ)
θ′3 (φi(ξ, yi(τ)), ωi) ,

υ+
i (τ | ξ, s) = − π

2l2i (τ)
θ′3 (φi(ξ + li(τ), yi(τ)), ωi) .

Here θ3(z, ω) is the Jacobi theta function of the third kind, [39], which is defined as
follows:

θ3(z, ω) = 1 + 2

∞∑
n=1

ωn
2

cos (2nz) , (24)

Also, in Eq.(23) the following notation is used

ωi = e
−π

2(τ−s)
l2
i
(τ) , φi(x, ξ) =

π(x− ξ)
2li(τ)

, (25)

∂θ3(z, ω)

∂z
= θ′3(z, ω) = −4

∞∑
n=1

nωn
2

sin (2nz) .

Formulas Eq.(23) and Eq.(21) are complementary. Since the exponents in the
definition of the theta functions in Eq.(23) are proportional to the difference τ − s,
the Fourier series Eq.(23) converge fast if τ − s is large. Contrary, the exponents in
Eq.(21) are inversely proportional to τ − s. Therefore, the series Eq.(21) converge
fast if τ − s is small.

2.3. Solution of Eq.(10) when σ is piecewise constant. Here we assume that
σi(x) = σi, i = 1, . . . , N , i.e. the volatility is a piecewise constant function of x.
For instance, this is true for the problem described in Section 3.2. As shown there,
the pricing PDE can be transformed to Eq.(9) instead of Eq.(62). According to the
transformation in Eq.(63) the clock will run differently at each ML interval, which
is inconvenient. Therefore, instead of a change of temporal variable, below we use
a transformation of the spatial variable x. This transformation allows using the
same time at each ML interval. To achieve this, we change the definition of τ(t) in
Eq.(63) to

τ =
1

2

∫ T

0

e−2
∫ s
0

[r(s)−q(s)] dk ds,

where r(t), q(t) for the problem considered in Section 3.2 are the deterministic in-
terest rate and continuous dividends. This converts the problem in Section 3.2 and
the PDE Eq.(61) to

∂U(τ, x)

∂τ
= σ2(x)

∂2U(τ, x)

∂x2
, (26)

U(0, x) = U0(x) = (x− S)+,

U(τ, 0) = 0, U(τ, x)
∣∣∣
x→∞

= x− e−
∫ T
0

(r(s)−q(s))dsS.
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And, according to Eq.(60)

σ2(T,K) = vi(T ), K ∈ [Ki,Ki+1].

The boundary and initial conditions in Eq.(26) are the direct translation of those
conditions in Eq.(57) and Eq.(58).

Again, as shown in Appendix A, the problem in Eq.(26) can be transformed to

∂U(τ, x̂)

∂τ
=

∂

∂x̂

(
Ξ2(x̂)

∂U(τ, x̂)

∂x̂

)
, x̂ = x̂(x), (27)

U(0, x̂) = U0(x̂) = (x(x̂)− S)+,

U(τ, x̂(0)) = 0, U(τ, x(x̂))
∣∣∣
x(x̂)→∞

= x(x̂)− e−
∫ T
0

(r(s)−q(s))dsS.

Also, since based on Eq.(63)

U(τ, x(x̂)) = P (T,K)e−
∫ T
0
q(s) ds,

the continuity of the solution and its flux at all internal boundaries can be expressed
as

χ+
i (τ) = χ−i+1(τ). (28)

Ξ2
i+1Ωi+1(τ) = −Ξ2

iΘi(τ).

To use the results of the previous Section, we proceed by applying the following
transformation to Eq.(18)

x̄ = Ξix̂, ȳ(τ) = Ξiy(τ), ξ̄ = Ξiξ, l̄(τ) ≡ Ξil(τ). (29)

Note, that the last equality in Eq.(29) is actually the definition of l̄(τ). Another
complication which comes due to this transformation is that in new variables x̄ the
layers stop to be continuous. In other words, the upper boundary of the i-th layer
ȳ+
i (τ) and the lower boundary of the (i + 1)-th layer ȳ−i+1(τ) are now not equal.

Therefore, in what follows to avoid any confusion we will explicitly use this notation,
i.e. the left and right boundaries of the i-th layer are denoted as y−i (τ) and y−i+1(τ).

Also, per these transformations, we have

ui(0, ξ̄) = ui(0,Ξi, ξ), ui(0,Ξi, ξ)dξ =
1

Ξ i
ui(0, ξ̄)dξ̄, (30)∫ yi+1(0)

yi(0)

u(0, ξ)υ−i (τ | ξ, 0)dξ =
1

Ξi

∫ ȳi+1(0)

ȳi(0)

u(0, ξ̄)ῡ−i (τ | ξ̄, 0)dξ̄,

ῡ−i (τ | ξ̄, 0) =−
∞∑

n=−∞

ȳ−i (τ)− ξ̄ + 2nl̄i(τ)

2Ξi
√
π(τ − s)3

e
−

(ȳ
−
i

(τ)−ξ̄+2nl̄i(τ))2

4Ξ2
i
(τ−s) .

It is easy to check that this transformation leaves φi(x̂, ξ)) and ∂x̂(φi(x̂, ξ)) in-
variant, but with the new definition

ω̄i = e
−π

2Ξ2
i (τ−s)
l̄2
i
(τ) .

Finally, let us redefine the partial derivatives

Ω̄i = −∂u(τ, x̄)

∂x̄

∣∣∣∣∣
x̄=ȳ−i (τ)

, Θ̄i =
∂u(τ, x̄)

∂x̄

∣∣∣∣∣
x̄=ȳ+

i (τ)

(31)
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instead of their definitions in Eq.(19), i.e. Ωi = ΞiΩ̄i, Θi = ΞiΘ̄i. Then the
continuity conditions in Eq.(28) change to

χ̄+
i (τ) = χ̄−i+1(τ), (32)

Ξ3
i+1Ω̄i+1(τ) = −Ξ3

i Θ̄i(τ).

To simplify notation, we omit bars from all new variables assuming this doesn’t
bring any confusion. Then Eq.(18) transforms to

ui(τ, x) =

∞∑
n=−∞

{
1

Ξi

∫ yi+1(0)

yi(0)

ui(0, ξ)Υn,i(x, τ | ξ, 0)dξ (33)

+

∫ τ

0

[
1

Ξi
Ωi(s) +

1

Ξi+1
χ+
i (s)y+′

i (s)

]
Υn,i(x, τ |y+

i (s), s)ds

+
1

Ξi

∫ τ

0

[
Θi(s)− χ−i (s)y−

′

i (s)
]

Υn,i(x, τ | y−i (s), s)ds

+

∫ τ

0

χ−i (s)Λn,i(x, τ | y−i (s), s)− χ+
i (s)Λn,i(x, τ | y+

i (s), s)ds

}
,

Υn,i(x, τ | ξ, s) =
1

2
√
π(τ − s)

[
e
− (2nli(τ)+x−ξ)2

4Ξ2
i
(τ−s) − e

−
(2nli(τ)+x+ξ−2y

−
i

(τ))2

4Ξ2
i
(τ−s)

]
,

Λn,i(x, τ | ξ, s) =
x− ξ + 2nli(τ)

4Ξi
√
π(τ − s)3

e
− (2nli(τ)+x−ξ)2

4Ξ2
i
(τ−s)

+
x+ ξ − 2y−i (τ) + 2nli(τ)

4Ξi
√
π(τ − s)3

e
−

(2nli(τ)+x+ξ−2y
−
i

(τ))2

4Ξ2
i
(τ−s) .

By analogy, the modified Volterra equations can be obtained from Eq.(20).
In Eq.(20) the unknown variables are [χ−1 (τ), χ+

1 (τ),Ω1(τ),Θ1(τ), . . . , χ−N (τ),

χ+
N (τ),ΩN (τ),ΘN (τ)], so that there are 4N unknowns in total. The boundary

conditions in Eq.(22) and the continuity conditions in Eq.(28) reduce the num-
ber of unknown variables to 2N − 2, because χ+

i (τ),Θi(τ) can be expressed via
χ−i (τ),Ωi(τ) and substituted into Eq.(20). Thus, the GIT method provides a sig-
nificant simplification of the system of Volterra equations as compared with the HP
method.

3. Application to finance. In this section, we consider several models that are
frequently used in mathematical finance. We provide a short description of each
model and demonstrate how to reduce the corresponding pricing problem to the
form suitable for solving it by the ML method.

3.1. One-factor short-rate models. As the first example, we consider one-factor
short interest rate (IR) models. Although these models were developed a long time
ago, they are still essential and widely used by practitioners. While one can price
zero-coupon bonds (ZCB) and European options on the ZCB and swaptions for
many of them analytically, this is not true for exotic options. For instance, pricing of
barrier options when the barriers are time-dependent and could pay time-dependent
rebates has to be done numerically. The same is true for American options.

However, as mentioned in the Introduction, one can find the solution to these
problems semi-analytically using the HP and GIT methods for some one-factor
models, including the time-dependent OU (Vasicek) model in [10, 36, 37], for the
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Hull-White model in [27], for the CEV and CIR models in [11], and then in a general
form for any model that can be reduced to the heat equation - in [26]. In other
words, solving these problems doesn’t require the ML method. Therefore, below
we consider some other models for which the barrier pricing problems cannot be
directly solved by the HP or GIT methods but can be solved by using the ML
method.

3.1.1. Pricing zero-coupon bonds and barrier options for the Black-Karasinski and
similar models. The Black-Karasinski (BK) model was introduced in [6], see also
[7] for a more detailed discussion. The BK is a one-factor short interest rate model
of the form

dzt = k(t)[θ(t)− zt]dt+ σ(t)dWt, r ∈ R, t ≥ 0, (34)

rt = s(t) +Rezt , r(t = 0) = r0.

Here κ(t) > 0 is the speed of mean-reversion, θ(t) is the mean-reversion level, σ(t)
is the volatility, R is some constant with the same dimensionality as rt, eg., it can
be 1/(1 year). This model is similar to the Hull-White model but preserves the
positivity of rt by exponentiating the Ornstein-Uhlenbeck (OU) random variable
zt. Because of that, usually, practitioners add a deterministic function (shift) s(t)
to the definition of rt to address possible negative rates and be more flexible when
calibrating the term-structure of the interest rates.

By Itô’s lemma the short rate r̄t = (rt − s(t))/R in the BK model solves the
following stochastic differential equation (SDE)

dr̄t = [kθ(t) +
1

2
σ(t)2 − k log r̄t]r̄tdt+ σ(t)r̄tdWt. (35)

This SDE can be explicitly integrated. Let 0 ≤ s ≤ t ≤ T , Then rt can be
represented as, [7]

r̄t = exp

[
e−k(t−s) log r̄s + k

∫ t

s

e−k(t−u)θ(u)du+

∫ t

s

σ(u)e−k(t−u)dW (u)

]
, (36)

and thus, conditionally on filtration Fs is lognormally distributed and always posi-
tive.

However, in the BK model, the price P (t, T ) of a (ZCB) with the maturity T is not
known in closed form since this model is not affine. Multiple good approximations
have been developed in the literature using asymptotic expansions of various flavors,
see, e.g., [3, 44, 20], and also survey in [46].

Despite this lack of tractability, the BK model is widely used by practitioners for
modeling interest rates and credit and is also known in commodities as the Schwartz
one-factor model. The BK model is attractive because it is relatively simple, guar-
antees non-negativity of the prices (which could be a bad feature in the current
environment). It could also be calibrated to the given term-structure of interest
rates and the prices or implied volatilities of caps, floors, or European swaptions
since the mean-reversion level and volatility are functions of time. However, for
exotic options, e.g., highly liquid barrier options, these prices are not known yet in
closed form. Therefore, various numerical methods are used to obtain them.

Here we describe how one can reduce the pricing problem for the ZCB to the
ML heat equation. Since this problem is defined at a semi-infinite domain, the
corresponding ML heat equation is also defined at a semi-infinite interval. Thus,
the number of layers could be infinite. Therefore, truncation of the semi-infinite
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interval to a finite is needed. Of course, the impact of the remainder should be
assessed appropriately.

Along the BK model lines, consider a model where the dynamics of the underlying
stochastic variable zt is the OU process defined in Eq.(34). We assume that the
interest rate rt is some deterministic function of zt

rt = s(t) + f(t, zt), z0 = 0.

In particular, according to Eq.(34) for the BK model we have f(t, zt) = Rezt , and
so R = r0 − s0.

In terms of z, the corresponding PDE for the ZCB price F (t, r) in Eq.(42) and
for the option price C(t, r) in Eq.(45) reads

0 =
∂V

∂t
+

1

2
σ2(t)

∂2V

∂z2
+ κ(t)[θ(t)− z]∂V

∂z
− [s(t) + f(t, z)]V, (37)

where V = V (t, z) is either F (t, z) or C(t, z). This equation should be solved
subject to the terminal and boundary conditions. For the ZCB price they are given
in Eq.(43) and Eq.(44), and for the Down-and-out barrier Call option price - in
Eq.(46) and in Eq.(48), Eq.(49). Note, that solving Eq.(37) for F (t, z) assumes
that z ∈

(
f−1(t,−∞), f−1(t,∞)

)
, while for C(t, z) the domain of definition is

z ∈ [Lz(t), f
−1(t,∞)), where Lz(t) = f−1(t, L(t)), and f−1(t, r) is the inverse

function.
To apply the ML method to Eq.(37), for instance, when solving the barrier option

pricing problem, we truncate the interval [L(t),∞) from above at z = zmax to make
it [Lz(t), zmax]. The reason this is possible lies in the fact that when z increases,
the ZCB price tends to zero based on the boundary condition. Therefore, the Call
option price in this limit vanishes as well. Thus, the contribution of the region
[zmax, f

−1(t,∞)) to the Call option price becomes negligible 5.
Now we split the interval [Lz(t), zmax] into N > 0 sub-intervals, and at every

interval [zi, zi+1], i = 1, . . . , N assume that f(t, z) = ai(t) + bi(t)z). Accordingly,
at every interval i, i = 1, . . . , N the PDE Eq.(37) takes the form

0 =
∂V

∂t
+

1

2
σ2(t)

∂2V

∂z2
+ κ(t)[θ(t)− z]∂V

∂z
− [s(t) + ai(t) + bi(t)z]V. (38)

This PDE can be transformed to the heat equation

∂U

∂τ
=
∂2U

∂x2
,

by the change of variables, [42, 27, 37]

V (t, z) = exp[αi(t)z + βi(t)]U(τ, x), τ = φ(t), x = zψ(t) + %(t),

where

ψ(t) = C1 exp

(∫ t

S

κ(q)dq

)
, φ(t) =

1

2

∫ S

t

σ2(q)ψ2(q)dq + C2, (39)

αi(t) = ψ(t)

∫ t

S

bi(q)

ψ(q)
dq + C3ψ(t), %i(t) = −

∫ t

S

[
κ(q)θ(q) + σ2(q)αi(q)

]
ψ(q)dq + C5,

βi(t) = −1

2

∫ t

S

αi(q)
[
2κ(q)θ(q) + σ2(q)αi(q)

]
dq +

∫ t

S

[s(q) + ai(q)]dq + C4,

5For some choices of the functions f(t, z) the value f−1(t,∞) could be finite which eliminates
the need for truncation.
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where C1, . . . , C5 are some constants. In our case we can choose C1 = 1, C2 = C3 =
C4 = C5 = 0.

One of the advantages of such an approach is that the new time τ doesn’t depend
on the specific interval i, i.e. the time τ runs in sync for all intervals [zi, zi+1], i =
1, . . . , N .

Thus, the main trick here is in using the approximation f(t, z) = ai(t) + bi(t)z.
This approximation provides the second order of accuracy in the length of the
interval (similar to the finite-difference method of the second order), and allows
reduction of the PDE at each interval to the heat equation (while the original PDE
doesn’t hold this property).

At the end of this Section, note that Eq.(38), if used for pricing ZCB, doesn’t
need the boundary condition at the left boundary z → −∞, as this is discussed
in [27] with a reference to Fichera theory, [40]. However, the price of the ZCB at
some fixed left boundary zmin, i.e. V (t, zmin) can be found having in mind that the
transformed PDE in Eq.(38) is affine, which yields

V (z, t, S) = A(t, S)eB(t,S)Rez . (40)

With allowance for the terminal condition in Eq.(43), the solution reads, [27]

B(t, S) = e
∫ t
0 κ(m) dm

∫ t

S

bi(m)e−
∫m
0 κ(q) dq dm,

A(t, S) = exp

[∫ t

S

(
ai(m) + s(m)− 1

2
B(m,S)

(
2θ(m)κ(m) +B(m,S)σ2(m)

))
dm

]
.

It can be seen that B(t, S) < 0 if t < S. Therefore, F (r, t, S)→ 0 when z →∞.

3.1.2. The modified BK (Verhulst) model. Since the BK model is not fully tractable,
in [25] we introduced a slightly modified version of the model as follows

dzt = k(t)[θ̄(t)− ezt ]dt+ σ(t)dWt, (41)

rt = s(t) +Rezt , z0 = 0, R = r0 − s(0).

It can be seen, that at small t |zt| � 1, and so choosing θ̄(t) = 1 + θ(t) replicates
the BK model in the linear approximation on zt. Similarly, the choice θ̄(t) = eθ(t)

replicates the BK model at zt close the mean-reversion level θ(t). Thus, this model
acquires the properties of the BK model while is a bit more tractable as this will
be seen below.

It is worth noting that if by using Itô’s lemma we re-write Eq.(41) for the stochas-
tic variable rt, the resulting dynamics can be recognized as the stochastic Verhulst
or stochastic logistic model, which are well-known in the population dynamics and
epidemiology; see, eg., [47, 5, 18] and references therein. For more information, see
[25].

By the Itô’s lemma and the Feynman–Kac formula any contingent claim written
on the rt as the underlying (for instance, price F (r̄, t, S) of a Zero-coupon bond
(ZCB) with maturity S) solves the following partial differential equation

0 =
∂F

∂t
+

1

2
σ2(t)r̄2 ∂

2F

∂r̄2
+ κ(t)r̄[Θ(t)− r̄]∂F

∂r̄
− (s(t) +Rr̄)F, (42)

r̄t =
rt − s(t)
r0 − s(0)

= ezt , Θ(t) = θ̄(t) +
1

2
σ2(t).

This equation should be solved subject to the terminal condition

F (r̄, S, S) = 1, (43)
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and the boundary condition

F (r̄, t, S)
∣∣∣
r̄→∞

= 0, (44)

see, eg., [2].
In the sequel we will also consider a Down-and-Out barrier Call option written

on the ZCB. It is known, [2], that under a risk-neutral measure the option price
C(t, r̄) solves the same PDE as in Eq.(42),

0 =
∂C

∂t
+

1

2
σ2(t)r̄2 ∂

2C

∂r̄2
+ κ(t)r̄[Θ(t)− r̄]∂C

∂r̄
− (s(t) +Rr̄)C. (45)

The terminal condition at the option maturity T ≤ S for this PDE reads

C(T, r̄) = (F (r̄, T, S)−K)
+
, (46)

where K is the option strike.
By a standard contract, the lower barrier LF (t) (which we assume to be time

dependent as well) is set on the ZCB price, and not on the underlying interest rate
r̄. This means that it can be written in the form

C(t, r̄) = 0 if F (r̄, t, S) = LF (t). (47)

This condition can be translated into the r̄ domain by solving the equation

F (r̄, t, S) = LF (t),

with respect to r̄. Denoting the solution of this equation as L(t) we find that Eq.(47)
in the r̄ domain reads

C(t, L(t)) = 0. (48)

The second boundary can be naturally set at r̄ →∞. As at r̄ →∞ the ZCB price
tends to zero, the Call option price also vanishes in this limit. This yields

C(t, r̄)
∣∣∣
r̄→∞

= 0. (49)

Accordingly, Eq.(45) has to be solve at r̄ ∈ [L(t),∞).

3.1.3. Pricing barrier options in the Verhulst model. As we have already mentioned,
in contrast to other similar one-factor models like the time-dependent Ornstein-
Uhlenbeck, Hull-White, CIR and CEV models which have been considered in [10,
27, 11], the solution of the pricing problem for the BK model is not known in closed
form6. Therefore, we propose an approximation that gives rise to a semi-analytical
solution for the barrier Call option price. This approximation is inspired by the ML
heat equations which are discussed in Section .

Since our problem in Eq.(45) is defined at the semi-infinite domain r̄ ∈ [L(t),∞),
using the ML approximation is time-consuming, as we need to split this semi-infinite
interval into a fixed number of sub-intervals. Therefore, it is feasible first to make
a change of variables

C(t, r̄) = V (t, x)e
∫ t
0
s(k)dk, x =

a(t)

r̄
, a(t) = e

∫ t
0 (κ(m)Θ(m)−σ2(m)) dm, (50)

so the problem to solve in new variables reads

0 =
∂V

∂t
+

1

2
σ2(t)x2 ∂

2V

∂x2
+ a(t)κ(t)

∂V

∂x
−Ra(t)

V

x
. (51)

6Some approaches for doing that are discussed in [25].
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Thus, now our problem is defined at a fixed domain x ∈ [0, 1/L(t)], where the upper
boundary is time dependent. Accordingly, in the new variables the Down-and-Out
barrier Call option becomes the Up-and-Out barrier Call.

Doing the second change of the dependent variable

V (t, x) = u(t, x)ed(t)/x, d(t) = Re−
∫ t
0
σ2(m)dm

∫ t

0

e
∫ y
0
κ(m)Θ(m)dmdy

yields the equation

0 =
∂u

∂t
+

1

2
σ2(t)x2 ∂

2u

∂x2
+ g(t)

∂u

∂x
− f(t)

u

x2
, (52)

f(t) =
1

2
d(t)

(
2a(t)κ(t)− d(t)σ2(t)

)
, g(t) = a(t)κ(t)− d(t)σ2(t).

Accordingly, in the new variables the initial and boundary conditions read

u(T, x) = exp

(
−d(T )

x
−
∫ T

0

s(k)dk

)
(F (x, T, S)−K)

+
, (53)

u(t, 0) = 0, u (t, y(t)) = 0, y(t) = a(t)/L(t).

The problem in Eq.(52), Eq.(53) cannot be solved in closed form. Therefore, we
proceed by borrowing the idea from the ML approach in physics which is described
in Sections 1,2. This approach implies that the interval x ∈ [0, y(t)] we approximate
the function ζ(x) = x2 by using a piecewise constant approximation. In more
detail, we split the interval [0, y(t)] into N > 0 sub-intervals, and at every interval
[xi, xi+1], i = 1, . . . , N assume that x2 ≈ νi(t)

7. For instance, one can choose the
middle value of the function ζ(x) at each sub- , so

νi(t) = y2(t)
(i+ 1/2)2

N2
.

With allowance for this approximation, at every i-th interval Eq.(52) takes the
form

0 =
∂u

∂t
+

1

2
σ2(t)νi(t)

∂2u

∂x2
+ g(t)

∂u

∂x
− f(t)

νi(t)
u. (54)

The Eq.(54) can be transformed to the heat equation

∂U

∂τ
=
∂2U

∂ς2
, (55)

using the transformation, [42]

u(t, x) = U(τ, ς) exp

(
−
∫ t

0

f(t)

νi(t)

)
, l = x−

∫ t

0

g(k)dk, τ =
1

2

∫ T

t

σ2(k)νi(k)dk.

Note, that under this approximation the new time τ also becomes a function of
the interval i.

7Since the upper boundary of the whole interval y(t) is the function of time, we need to put
νi = νi(t)
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3.2. Local volatility and Dupire’s equation. Calibration of the local volatility
model (constructed by using a one-factor Geometric Brownian motion process) to a
given set of option prices is a classical problem of mathematical finance. It was con-
sidered in multiple papers, and various solutions were proposed; see, e.g., a survey
in [23, 24] and references therein. In particular, in [24] an analytical approach to
solving the calibration problem is developed. This approach extends the method in
[38] by replacing a piecewise constant local variance construction with a piecewise
linear one and allowing non-zero interest rates and dividend yields. This approach
remains analytically tractable as it combines the Laplace transform in time with an
analytical solution of the resulting spatial equations in terms of Kummer’s degen-
erate hypergeometric functions.

A similar problem could be formulated not just for the Black-Scholes model but
also for other models. For instance, in [9, 8] two extensions of the Local Vari-
ance Gamma model proposed initially in [13] were developed. The first new model
(ELVG) considers a Gamma time-changed arithmetic Brownian motion with drift
and the local variance to be a piecewise linear function of the strike. The second
model (GLVG) is a geometric version of the ELVG with drift. It also treats various
cases by introducing three piecewise linear models: the local variance as a function
of strike, the local variance as a function of log-strike, and the local volatility as
a function of strike (so, the local variance is a piecewise quadratic function of the
strike). For all these extensions, the authors derive an ordinary differential equation
for the option price, which plays the role of Dupire’s equation for the standard local
volatility model. Moreover, it can be solved in closed form.

In [24, 9, 8] all models were calibrated to the market quotes term-by-term. There-
fore, various types of no-arbitrage interpolation were proposed to guarantee no-
arbitrage while keeping the model analytically tractable on the other hand; further
details are given in [23].

Two advantages of the semi-analytical approach, which are essential for cali-
bration the model, should be emphasized. First, the option prices can be found
analytically in a semi closed form. Here “semi” means that the analytic solution
requires an additional inverse transform to be applied to get the final prices; see
[24]. However, in [9, 8] since the Dupire-like equation is an ODE and not a PDE,
this step is eliminated. Nevertheless, all these models are calibrated term-by-term.

This idea can be extended by constructing a semi-analytical solution of the ML
heat equation, which is analytic in time. Thus, the term-by-term calibration could
be eliminated, and the quotes for all strikes and maturities can be used simulta-
neously. Therefore, this approach allows a further acceleration of the calibration
process.

For brevity, let us consider European options, for instance, a Put option on
a stock. It is well-known that the price P (T,K) of the option written on the
underlying stock price St as a function of the option maturity T and strike K solves
Dupire’s equation, [16]

∂P

∂T
=

1

2
σ2(T,K)

∂2P

∂K2
− (r − q)K ∂P

∂K
− q(T )P. (56)

with σ = σ(t, S) being the local volatility, and q(t) is the dividend yield. This PDE
should be solved subject to the initial condition at T = 0

P (0,K) = (K − S)+, (57)
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and natural boundary conditions for the put option price that read, [21]

P (T,K) = 0, K → 0,
P (T,K) = D(t, T )(K − S) ≈ D(t, T )K, K →∞, (58)

where the discount factor D(t, T ) is defined as

D(t, T ) = exp

(
−
∫ T

t

r(k)dk

)
. (59)

To proceed further, we use the idea in [38, 24] and approximate the local vari-
ance using some piecewise approximation in the strike space. However, in con-
trast to [38, 24] we make this approximation a function of time. Further, sup-
pose that for each trading maturity Tj , j ∈ [1,M ] the market quotes are pro-
vided at a set of strikes Ki,j , i = 1, . . . , nj where the strikes are assumed to be
sorted in the increasing order. Let us construct a finite grid in the strike space
G(K) : K ∈ [min(Ki,j),max(Ki,j)], j = 1, . . . ,M, i = 1, . . . , nj , by splitting the
whole interval K ∈ [min(Ki,j),max(Ki,j)] into n sub-intervals. At every interval
[Ki,Ki+1], i = 1, . . . , N , we approximate the local variance function σ2(T,K) by a
piecewise constant function in K as follows:

σ2(T,K) = vi(T ), K ∈ [Ki,Ki+1]. (60)

This approximation is not continuous, so the local variance σ2(T,K) experience a
finite jump at every point Ki. However, it is continuous in the maturity T .

Accordingly, at every interval [Ki,Ki+1] Eq.(56), V (T,K) takes the form

∂Pi
∂T

=
1

2
vi(T )

∂2Pi
∂K2

− [r(T )− q(T )]
∂Pi
∂K
− q(T )Pi. (61)

This equation can be transformed to the heat equation

∂Ui
∂τ

=
∂2Ui
∂x2

, (62)

by a change of variables

Pi(T,K) = Ui(τ, x)e−
∫ T
0

(q(s)ds, x = e−
∫ T
0

(r(s)−q(s) dsK, (63)

τ =
1

2

∫ T

0

vi(s)e
−2

∫ s
0

(r(s)−q(s)) dk ds.

It is important to note that the new time τ runs differently at every interval K ∈
[Ki,Ki+1] as it depends on the local variance value vi(s) at this interval.

4. Solution of the Volterra equations. An efficient solution of the derived sys-
tems of Volterra equations is a problem that requires some attention and extended
description. Therefore, it will be published elsewhere. Instead, here we show that
a particular choice of the internal boundaries can reduce this problem to a linear
system with a tridiagonal matrix allowing the inverse Laplace transform. In this
section, we explain this approach in detail.

We start with Eq.(20). Using the definitions of η±, υ±, υ±0 in Eq.(21), we observe
that under all integrals in Eq.(20) the functions fi(s),Θi(s),Ωi(s) are functions of
s, while functions η±, υ±, υ±0 are functions of t−s and yi(t)−yi(s) and zi(t)−zi(s).
Recall that functions y1(t) = χ−, yN (t) = χ+ define the external boundaries of the
computational domain, while functions yi(t), i = 2, . . . , N−1 define the boundaries
of the internal layers (the internal boundaries).



MULTILAYER HEAT EQUATIONS 21

Since the internal boundaries are artificial, we can construct them as we wish.
For instance, we can use polynomial functions, such as yi(s) = ais

2 +bis+ci, where
ai, bi, ci are some constants. Then yi(t)− yi(s) can also be represented as a certain
function g(t− s). Indeed

yi(t)− yi(s) = −ai(t− s)2 + (bi + 2ait)(t− s).
A similar representation can be obtained for yi+1(s)− yi(s)

yi+1(s)− yi(s) = (ai+1 − ai)s2 + (bi+1 − bi)s+ (ci+1 − ci)
= A(t− s)2 +B(t− s) + C,

A = ai+1 − ai, B = 2At+ bi+1 − bi,
C = ci − ci+1 + t[bi − bi+1 + (ai − ai+1)t].

Same can be done for a polynomial of any degree.
All coefficients ai, bi, ci can be precomputed given the external boundaries. An

example of this construction is given in Fig. 1.

•

yN (t)

y0(t)

yi(t)

yi+1(t)

yi−1(t)

...

...

...

...

Figure 1. Internal layers constructed for the given external
boundaries y0(t) and yN (t), and the number of layers N , by us-
ing 3 points for each boundary yi(t) and polynomial curves.

In more detail, suppose that for the given functions y1(t) = χ−(t), yN+1 =
χ+(t), we want to have N layers. We use N uniform nodes to split the interval
[χ−(0), χ+(0)] into N subintervals. We do the same for the interval [χ−(t), χ+(t)].
If the boundaries χ−(t), χ+(t) are smooth enough, we can connect points yi(0), yi(t),
i = 2, . . . , N by straight lines in such a way that all boundaries don’t cross each
other. Suppose this is not possible because the external boundaries are too convex
or concave. In that case, we can find some s = τ where the distance between the
external boundaries is minimal and put N nodes there. Then, we can connect all
points yi(0), yi(τ), yi(t) by parabolas, and again check that all the boundaries don’t
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cross each other. We can continue this process by using polynomials of a higher
degree to provide the final representation of the boundaries.

Thus, we can find a polynomial of the necessary degree to guarantee that all
boundaries don’t cross each other unless the external curves have a very peculiar
shape, which does not happen in the context of financial applications. Otherwise,
we need to use a general approach to the computation of the integrals in Eq.(20),
which will be published elsewhere.

Provided that all the boundaries are constructed in such a way, one can observe
that all integrals in Eq.(20) are convolutions. Therefore, we can apply the Laplace
transform L(f |s, λ)

L(f |s, λ) =

∫ ∞
0

e−λsf(s)ds

to both parts of each equation in Eq.(20). Taking into account that

L(f ∗ g) = L(f)L(g), L(f ′) = λL(f)− f(0), (64)

and obtain from Eq.(20) a linear system of equations for L(χ+
i ),L(χ−i ),L(Ωi),L(Θi).

Using the conditions at the internal boundaries (such as in Eq.(32)), this system
can be reduced to a linear system for only L(χ−i ),L(Ωi). One can check that the
resulting system is block-diagonal, with all blocks being tridiagonal matrices. Once
this system is solved, the functions χ−i (t),Ωi(t) is found by using the inverse Laplace
transform.

Consider the heat equation in a strip with a piecewise constant thermal conduc-
tivity coefficient to illustrate our approach.

4.1. The heat equation in a strip. Consider the following problem for the heat
equation with a piecewise constant thermal conductivity coefficient (the ML prob-
lem):

∂

∂x

(
σ2(x)

∂U

∂x

)
=
∂U

∂t
, (x, t) ∈ [y0, yN ]× R+ (65)

U(t, y0) = 0, U(t, yN ) = 0.

U(0, x) = δ(x− x0).

Here the thermal conductivity coefficient σ(x) is a piecewise constant function
of x, which changes from layer to layer

σ(x) =

N∑
i=1

1(yi−1 < x ≤ yi)σi, (66)

y0 < y1 < y2 < ... < yi < ... < yN .

and δ(x) denotes the Dirac delta function. As before yi are the boundaries of the
layers in x space. Without loss of generality, we assume that x0 ∈ [yj−1, yj), 1 <
j < N .

Due to the initial condition in Eq.(65) the solution of this problem is Green’s
function for Eq.(65).

We represent the solution U(t, x) in the form

U(t, x) =

N∑
i=1

1(yi−1 < x ≤ yi)[Ui(t, x) +Hi(t, x)],

where the functions Ui(t, x) and Hi(t, x) solve the following problems
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∂

∂x

(
σ2
i

∂Ui
∂x

)
=
∂Ui
∂t

, (x, t) ∈ (yi−1, yi]× R+, (67)

lim
x→yi−1

Ui(t, x) = χ−i (t), Ui(t, yi) = χ+
i (t),

U(0, x) = 0,

and

∂

∂x

(
σ2
i

∂Hi

∂x

)
=
∂Hi

∂t
, (x, t) ∈ (yi−1, yi]× R+, (68)

lim
x→yi−1

Hi(t, x) = 0, Hi(t, yi) = 0,

H(0, x) = δ(x− x0).

A well-known physical argument shows that the solution and its flux must be
continuous at the layers’ boundaries. The first condition yields

U1(t, y0) = 0, (69)

lim
x→yi

Ui(t, x) = Ui+1(t, yi), i = 1...N − 1,

lim
x→yN

UN (t, x) = 0.

According to [26], the function H(t, x) 6= 0 only at that interval which contains
the point x0, i.e. [yj−1, yj). Therefore, the flux continuity conditions could be
written as

lim
x→yi

σ2
i

∂Ui
∂x

(t, yi) = σ2
i+1

∂Ui+1

∂x
(t, yi), i 6= j − 1, j, (70)

lim
x→yj−1

σ2
j−1

∂Uj−1

∂x
(t, yj−1) = σ2

j

∂Uj
∂x

(t, yj−1) + σ2
j

∂Hj

∂x
(t, yj−1),

lim
x→yj

[
σ2
j

∂Uj
∂x

(t, yj) + σ2
j

∂Hj

∂x
(t, yj)

]
= σ2

j+1

∂Uj+1

∂x
(t, yj).

It follows from Eq.(69) that

χ−1 (t) = χ+
N (t) = 0, χ+

i (t) = χ−i+1(t), i = 1, . . . , N − 1.

To simplify the notation let us introduce new functions fi(t), such as

χ+
i (t) = χ−i+1(t) = fi(t), i = 0, . . . , N,

so obviously f0(τ) = fN+1(τ) = 0. Using Eq.(20) (or Eq. 3.33 in [26]), one can get
an explicit representation for the derivatives of U(t, x) at each interval

∂Ui
∂x

∣∣∣∣∣
x=yi

=
fi(t)

σi
√
πt
−
∫ t

0

fi(s)− fi(t)
2σi
√
π(t− s)3

ds (71)

+

∫ t

0

[
fi−1(s)λ+

i (t|yi−1, s)− fi(s)λ+
0,i(t|yi, s)

]
ds,

∂Ui+1

∂x

∣∣∣∣∣
x=yi

= − fi(t)

σi+1

√
πt

+

∫ t

0

fi(s)− fi(t)
2σi+1

√
π(t− s)3

ds

+

∫ t

0

[
fi(s)λ

−
0,i+1(t|yi, s)− fi+1(s)λ−i+1(t|yi+1, s)

]
ds.
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Here

λ−i (t | ξ, s) =

∞∑
n=−∞

e
− (yi−ξ+2nli)

2

4σ2
i

(t−s)

2σ3
i

√
π(t− s)3

[
1− (yi − ξ + 2nli)

2

2σ2
i (t− s)

]
(72)

= − π
2

4l3i
θ′′3

[
π(yi − ξ)

2li
, qi(s)

]
,

λ+
i (τ | ξ, s) =

∞∑
n=−∞

e
− (yi−ξ+(2n+1)li)

2

4σ2
i

(t−s)

2σ3
i

√
π(t− s)3

[
1− (yi − ξ + (2n+ 1)li)

2

2σ2
i (t− s)

]
= − π

2

4l3i
θ′′3

[
π(yi + li − ξ)

2li
, qi(s)

]
,

λ−0,i(t | ξ, s) = λ−i (t | ξ, s)− e
− (yi−1−ξ)

2

4σ2
i

(t−s)

2σ2
i

√
π(t− s)3

[
1− yi−1 − ξ

2σ2
i (t− s)

]
,

λ+
0,i(t | ξ, s) = λ+

i (t | ξ, s)− e
− (yi−ξ+li)

2

4σ2
i

(t−s)

2σ2
i

√
π(t− s)3

[
1− (yi − ξ + li)

2

2σ2
i (t− s)

]
,

qi(s) = e−π
2σ2
i (t−s)/l2i .

Here θi(z, p), i = 2, 3 are the Jacobi theta functions of the second and third kind,
[39], and θ′′3 (z, p) is the second derivative of θ3(z, p) on the first argument.

Substituting ξ = yi−1, yi, yi+1 into Eq.(72) we obtain

λ−i+1(t | yi+1, s) = − π2

4l3i+1

θ′′3 (0, qi+1(s)), (73)

λ+
i (τ | yi−1, s) = − π

2

4l3i
θ′′3 (π, qi(s)),

λ−0,i+1(t | yi, s) =

∞∑
n=−∞
n 6=0

e
− (2nli+1)2

4σ2
i+1

(t−s)

2σ3
i+1

√
π(t− s)3

[
1− (2nli+1)2

2σ2
i+1(t− s)

]
,

λ+
0,i(t | yi, s) = − π

2

4l3i
θ′′3 (π, qi(s))−

e
− l2i

4σ2
i

(t−s)

2σ2
i

√
π(t− s)3

[
1− l2i

2σ2
i (t− s)

]
.

Since at s→ t we have q(s)→ 1, all RHSs in Eq.(73) are regular in this limit and
vanish. The latter is due to the fact that limq→1 θ

′′
3 (0, q) = θ′′3 (π, q) = 0. Therefore,

all integral kernels in Eq.(71) are regular. We also assume that functions fi(s) are
smooth enough, so that in the limit all the integrals vanish.

Applying integration by parts to Eq.(71), we get the following simplified system

∂Ui
∂x

∣∣∣∣∣
x=yi−1

=−
∫ t

0

[
ηeveni (t, s)d (fi−1(s))− ηoddi (t, s)d (fi(s))

]
− fi−1(0)

σi
√
πt
− fi−1(0)ηeveni (t, 0) + fi(0)ηoddi (t, 0),
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∂Ui
∂x

∣∣∣∣∣
x=yi

=−
∫ t

0

[
ηoddi (t, s)d (fi−1(s))− ηeveni (t, s)d (fi(s))

]
+

fi(0)

σi
√
πt

+ fi(0)ηeveni (t, 0)− fi−1(0)ηoddi (t, 0),

where

ηeveni (t− s) =
1

σi
√
π(t− s)

∞∑
n=−∞

e
− (2nli)

2

4σ2
i

(t−s) , (74)

ηoddi (t− s) =
1

σi
√
π(t− s)

∞∑
n=−∞

e
− ((2n+1)li)

2

4σ2
i

(t−s) .

Indeed, since η−i (t|yi−1, t) = 0, η−i (t|yi, t) = 0, fi−1(0) = 0, fi(0) = 0 we have

− fi−1(t)

σi
√
πt

+

∫ t

0

fi−1(s)− fi−1(t)

2σi
√
π(t− s)3

+

∫ t

0

[
fi−1(s)d

(
η−i (t|yi−1, s)

)
− fi(s)d

(
η−i (t|yi, s)

)]
= −fi−1(t)

σi
√
πt
− fi−1(t)

σi
√
π(t− s)

∣∣∣∣∣
s=t

s=0

+
fi−1(s)

σi
√
π(t− s)

∣∣∣∣∣
s=t

s=0

−
∫ t

0

1

σi
√
π(t− s)

d (fi−1(s)) + fi−1(s)η−i (t|yi−1, s)

∣∣∣∣∣
s=t

s=0

− fi(s)η−i (t|yi, s)

∣∣∣∣∣
s=t

s=0

−
∫ t

0

[
η−i (t|yi−1, s)d (fi−1(s))− η−i (t|yi, s)d (fi(s))

]
= −

∫ t

0

[(
η−i (t|yi−1, s) +

1

σi
√
π(t− s)

)
d (fi−1(s))− η−i (t|yi, s)d (fi(s))

]

= −
∫ t

0

[
ηeveni (t, s)d (fi−1(s))− ηoddi (t, s)d (fi(s))

]
.

In turn, as shown in [26], Eq. 3.31, the function Hj(t, x) can be represented as
follows

Hj(t, x) =
1

2σj
√
πt

∞∑
n=−∞

[
e
−

(2nlj+x−x0)2

4σ2
j
t − e

−
(2nlj+x+x0−2yj−1)2

4σ2
j
t

]
.

Hence, the gradients at the boundaries are

∂Hj(t, x)

∂x

∣∣∣∣∣
x=yj−1

≡ υ−(t|x0, 0) (75)

=
∂

∂x

{
1

2lj
θ3

[
π(x− x0)

2lj
, qj(0)

]
− 1

2lj
θ3

[
π(x+ x0 − 2yj−1)

2lj
, qj(0)

]} ∣∣∣∣∣
x=yj−1

=
1

4l2j

{
θ′3

[
π(yj−1 − x0)

2lj
, qj(0)

]
− θ′3

[
π(x0 − yj−1)

2lj
, qj(0)

]}
,
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∂Hj(t, x)

∂x

∣∣∣∣∣
x=yj

=
1

4l2j

{
θ′3

[
π(yj − x0)

2lj
, qj(0)

]
− θ′3

[
π(x0 − yj)

2lj
, qj(0)

]}
.

Thus, we obtain the following system of Volterra equations∫ t

0

[
− σ2

i η
odd
i (t− s)d (fi−1(s)) +

(
σ2
i η
even
i (t− s) + σ2

i+1η
even
i+1 (t− s)

)
d (fi(s))

(76)

− σ2
i+1η

odd
i+1(t− s)d (fi+1(s))

]
= hi(t),

hi(t) = 0, i 6= j − 1, j, hj−1(t) = σ2
jυ
−(t|x0, 0), hj(t) = −σ2

jυ
+(t|x0, 0).

Since the kernels depend only on t− s one can rewrite the above equations as a
convolution(
−σ2

i η
odd
i (·) ∗ f ′i−1(·) +

[
σ2
i η
even
i (·) + σ2

i+1η
even
i+1 (·)

]
∗ f ′i(·)− σ2

i+1η
odd
i+1(·) ∗ f ′i+1(·)

)
(t)

= hi(t). (77)

4.2. The Laplace transform. Applying the Laplace transform to Eq.(77), we get
√
λ
(
−σ2

i L(ηoddi )L(fi−1) +
(
σ2
i L(ηeveni ) + σ2

i+1L(ηeveni+1 )
)
L(fi)− σ2

i+1L(ηoddi+1)L(fi+1)
)

=
L(hi)√
λ
,

or, in the matrix form

Mg =
σ2
j√
λ

[
L(υ−(t|x0, 0))1j−1 − L(υ+(t|x0, 0))1j

]
. (78)

Here 1j denotes the indicator vector, i.e.

1j =

0, 0, ..0︸ ︷︷ ︸
j−1

, 1, 0, ...0

> ,
the vector g is the column vector

g = (Lf1, . . . ,LfN−1)
>
,

and the matrix M is a symmetric tridiagonal matrix

M =



D1 −β1

−β1 D2 −β2

−β2
. . .

. . .

. . .
. . . −βN−2

−βN−2 DN−1

 ,

Coefficients of the matrix M have the form

βi =
√
λσ2

i+1L(ηoddi+1), Di =
√
λ
[
σ2
i L(ηeveni ) + σ2

i+1L(ηeveni+1 )
]
, (79)
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and can be found explicitly, see Appendix C

L(ηeveni ) =
1

σi
√
λ

coth

(√
λli
σi

)
, L(ηoddi ) =

1

σi
√
λ

1

sinh
(√

λli
σi

) ,
L(υ−(t|x0, 0)) =

1

σ2
j

sinh
(

(yj+1−x0)
√
λ

σj

)
sinh

(
lj
√
λ

σj

) , L(υ+(t|x0, 0)) = − 1

σ2
j

sinh
(

(x0−yj)
√
λ

σj

)
sinh

(
lj
√
λ

σj

) .

Finally, introducing the notation

ωi =
li
σi
, γ1 =

yj+1 − x0

lj
, γ2 =

x0 − yj
lj

, (80)

the system Eq.(78) can be represented as

Mg =
1√
λ

 sinh
(
γ1ωj

√
λ
)

sinh
(
ωj
√
λ
) 1j−1 +

sinh
(
γ2ωj

√
λ
)

sinh
(
ωj
√
λ
) 1j

 , (81)

Di = σi coth
(
ωi
√
λ
)

+ σi+1 coth
(
ωi+1

√
λ
)
, βi =

σi+1

sinh
(
ωi+1

√
λ
) .

5. Numerical experiments. In this section, we solve the problem in Eq.(65) by
using the ML method. Note that such problems appear both in physics and in
finance. A simple example of a financial problem is finding Green’s function for
pricing double barrier options written on the underlying St with local volatility

dSt = σ(St)dWt,

where σ(S) is a piecewise constant function. Below we describe two numerical
experiments.

5.1. Constant volatility σi. To start with, we assume that σi = const, i =
1, . . . , N , and hence, σ2

i in Eq.(65) can be pulled out of the derivative in x. This
problem has an analytic solution, see [34] and references therein, which can be
represented as the Fourier series. Re-writing it by using the definition of Jacobi
theta functions yields

U(T, y) =
1

2l

[
θ3

(
π(y − x0)

2l
, q

)
− θ3

(
π(y + x0 − 2y0)

2l
, q

)]
,

l = yN − y0, q = e−
π2σ2

l2
T .

To solve this problem, we need first to solve the linear system in Eq.(81) nu-
merically, and then use the corresponding Laplace images to find the function
fi = f(yi), i = 1, . . . , N by applying an inverse Laplace transform. For the latter
step, we use the Gaver-Stehfest method

f(T, y) = Λ

[m]∑
s=1

St(m)
s L(fi(Λ)), Λ =

log 2

T
. (82)

This algorithm was widely studied (see, e.g., [30] and references therein), and,
provided that the resulting function is non-oscillatory, converges very quickly. For
instance, choosing m = 12 terms in the series representing the solution is usually
sufficient. The coefficients Sts can be found explicitly in advance.
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Table 1. Parameters of the test.

y0 yN σ T N m
-1.0 1.0 0.5 1.0 20 16

The model parameters for this test are given in Table 1, and the results are
depicted in Fig. 2a. Here, the left vertical axis shows the values of yi(T ), and the
right vertical axis shows the relative error (in percent) of the solution compared
with the analytic one.
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Figure 2. Comparison of the Analytic and ML solutions (a), and
Analytic, ML and FD solutions (grid with 41 × 40 nodes) (b) for
σi = 0.5, T = 1. Here Analytic denotes the analytic solution of the
problem, ILT - the ML solution, FD - the FD solution, DiffILT -
the relative error of the ML solution with respect to the analytic
one, DifFD - same for the FD method.

The ML solution coincides with the analytic one with high accuracy. The elapsed
time of the experiment is 8.8 ms (we run our code, written in Matlab, on a PC with
two Quadcore CPU Intel i7-4790 3.60 GHz). The elapsed time doesn’t depend on
the option maturity T , so the calculation is fast even for long maturities. Note
that the ML solution’s computation takes only 2.3 ms, while the remaining time is
used for computing the Gaver-Stehfest coefficients (but those can be precomputed
if so desired). Since the matrix M is tridiagonal, the ML method’s complexity is
O(mN). By comparison, the complexity of the finite difference (FD) method is
O(MN), M is the number of time steps. Obviously, for long maturities M � m,
so the FD method is slower.

To validate this, we also implemented an FD method to solve the same problem.
The FD solver runs on a uniform grid and is a Crank-Nicolson scheme after four
steps, while for the first four steps it uses an implicit Euler scheme. In other words,
we start with four Ranacher steps, see [22] and references therein.

To have the same spatial approximation in y, we need to run both the ML and
FD methods with the same number of nodes. While the ML method provides an
accurate result even at N = 10, the FD method fails and needs at least 40 nodes
to converge to the solution. Therefore, we choose N = 41. The same is true for the
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time step, so the minimal number of FD time steps in our experiment is M = 40,
while the ML method provides the solution at t = T just at once. The results of
the comparison of both methods with the analytic solution are given in Fig. 2b.
Again, the left vertical axis shows the values of yi(T ), and the right vertical axis is
the relative error (in percent) of the solution compared with the analytic one.

It is clear that the accuracy of the FD method is worse than that of the ML
method. By increasing N and M , one can improve the FD method’s accuracy,
but it takes time. The elapsed time for the FD method with N = 41,M = 40 is
41 ms, so it is about 18 times slower than the ML method. Obviously, for longer
maturities, more time-steps are necessary, so the FD method becomes even slower.

It is also known that for small T and volatilities, the FD method’s error increases.
To illustrate this fact, we run the same experiment, but now with T = 0.5, σ = 0.3.
The results are presented in Fig. 3.
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Figure 3. Comparison of the Analytic, ML and FD solutions for
σi = 0.3, T = 0.5. Here Analytic denotes the analytic solution of
the problem, ILT - the ML solution, FD - the FD solution, DiffILT
- the relative error of the ML solution with respect to the analytic
one, DifFD - same for the FD method.

Fig. 3a shows that the accuracy of the ML method is still good with the same
number of internal layers N = 40, while the error of the FD method with N =
41,M = 40 is quite significant. The error can be reduced by running the FD
method with N = 151,M = 150 (see Fig. 3b); however, the corresponding elapsed
time is 86 ms. Thus, for the same accuracy, the ML method is 37 times faster.

5.2. Piecewise constant volatility σi. Here σ(x) is a piecewise constant function
defined in Eq.(66). In this case, there is no analytic solution of the problem8, hence
as a benchmark, we use an FD method, namely the same FD solver as in the previous
experiment. However, since we solve the problem in Eq.(65), an FD scheme has to
be implemented for the conservative heat equation. While such an implementation
is possible, we prefer to rewrite Eq.(67) and Eq.(68) in a non-divergent form. For

8Based on Eq.(81) it is possible to derive an explicit series representation of the solution. It
will be published elsewhere.



30 ANDREY ITKIN, ALEXANDER LIPTON AND DMITRY MURAVEY

instance,

∂Ui
∂t

= Ξ2
i (x)

∂2Ui
∂x2

+
∂Ξ2(x)

∂x

∂Ui
∂x

,

Ξi(x) = σi[ΘH(xi+1 − x)−ΘH(xi − x)],

where ΘH(x) is the Heaviside theta function, [1] with ΘH(0) = 1. Accordingly, on
the interval x ∈ (yi, yi+1] we have

∂Ξ2(x)

∂x
= σ2

i+1[δ(xi − x)− δ(xi+1 − x)].

At the point x = xi+1 this gives ∂Ξ2(x)/∂x = −σ2
i+1δ(0). In turn, δ(0) can be

numerically approximated as

δ(0) =
2

yN − y0
, (83)

which provides the correct normalization of the Dirac delta function. Indeed, the
integral over the interval [y0, yn] of the test function equal to 1 at x = yi+1 and 0
otherwise computed by using a trapezoidal rule is equal to (yN − y0)/2. Therefore,
we need to use Eq.(83) to provide the correct numerical normalization.

Table 2. Parameters of the second experiment.

y0 yN T N m M
-1.0 4.0 2.0 50 16 100

In this experiment, we use parameters of the model given in Table 2, and the
piecewise constant volatility σi, which is defined as follows

σi(s) = e−i/N , s ∈ (yi, yi+1], i = 1, . . . , N. (84)
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Figure 4. Comparison of the ML and FD solutions for a piecewise
constant σ(x). Here ILT denotes the ML solution, FD - the FD
solution, Dif - the relative error of the FD solution with respect to
the ML one.

The results of the test are presented in Fig. 4a. Again, the number of nodes for
the ML and FD methods is the same. The difference between the two solutions
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reaches 16% at the right external boundary, 4% at the left external boundary, and
changes in this range in between. The elapsed time is 2.2 ms for the ML and 50 ms
for the FD methods.

To check the convergence of the solution, we rerun the calculation with N = 200.
The results are presented in Fig. 4b. The relative error ε drops down to be in
ε ∈ [−0.6, 0.2] percent. The elapsed time is 5 ms for the ML and 88 ms for the FD
methods. Note that in this case, to reduce the error, we also need to increase the
number of layers for the ML method. This effect is explained in Section 6; it is due
to the non-smoothness of σ in this experiment.

The physics meaning of the obtained results is as follows. Suppose we consider
diffusion rather than heat conduction. According to Eq.(84) the diffusion coefficient
σ2(x) is a decreasing function of x when moving from y0 to yN . Since we request con-
tinuity of the flux at the internal boundaries, the gradient of the solution increases
with x when moving from left to right. The maximum of the solution, which is
located at x = x0 when t = 0, travels to the right when t increases. Recall that
the solution is the Green function of our problem. This behavior was also observed
in [31], where the authors studied particles trapped between two nearly parallel
walls making their confinement position dependent. They not only measured a dif-
fusion coefficient which depended on the particles’ position but also reported and
explained a new effect: a drift of the particles individual positions (so change in
concentration) in the direction of the diffusion coefficient gradient, in the absence
of any external force or concentration gradient.

6. Discussion. In the previous section, we have demonstrated that the ML
method’s complexity is linear in N . The same is true in the general case because,
as mentioned at the end of Section 4, from Eq.(20) we obtain a linear system of
equations for L(χ−i ),L(Ωi) which has a block diagonal matrix with all blocks be-
ing tridiagonal matrices. Therefore, the ML method’s complexity remains linear
and approximately is O(4mN), so it doesn’t depend on T . Hence, if 4m is of the
order of M , the ML and the FD methods have the same complexity. For typical
values m = 12 we have 4m = 48. Therefore, for short maturities T < 1 year, both
methods’ complexity is roughly the same. However, our method has an obvious
advantage for the long maturities occurring in the Fixed Income context.

The ML method has some other advantages as well. First, the FD construction
provides only the values of the unknown function at the grid nodes in space, and at
intermediate points they can be found only by interpolation. In contrast, using the
ML method, we obtain an analytic representation of the solution at any x (once the
values at the layers’ boundaries are found). Second, the Greeks, i.e., derivatives of
the solution, can be expressed semi-analytically by differentiating the solution with
respect to x or some parameter of the model and performing numerical integration,
provided that the values at the internal boundaries are found. For the FD method,
the Greeks can be found only numerically. Moreover, to compute the Vega, a new
run of the FD method is required, while for the ML method, all Greeks can be
calculated in one go, as described.

As far as an approximation with respect to x is concerned, the following observa-
tion holds. Using the ML method, we obtain an analytical solution at every interval
i, i = 1, . . . , N . However, to do this, we need to approximate the corresponding
coefficient, e.g., σ(x) over layers by piecewise constant or linear functions. For the
linear approximation, the solution’s accuracy is O((∆x)2), i.e., same as for the FD
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method of the second order. Therefore, it seems that the spatial accuracies of both
ML and FD methods are the same.

On the other hand, the error of both methods is also proportional to the second
derivative. For the FD method, this is the second derivative of the solution; for the
ML method - the second derivative of the coefficient, e.g., σxx(x). If the latter is
smaller than the second derivative of the solution (say, the option Gamma), then
the number of layers N can be decreased while providing the same accuracy. This
reduction provides an additional speedup of our method as compared with the FD
method. This fact is illustrated by our first experiment where function σ(x) is
smooth, so even a small number of layers is sufficient to obtain a very accurate
solution. In the second experiment, σ(x) jumps at the layer’s boundaries, and,
therefore, one needs to increase the number of layers to provide the same accuracy.

Note that for the FD method, the difficulties caused by sharp gradients can be
alleviated by using nonuniform grids where the nodes are condensed in the area
where gradients are high. The same approach could be applied to the construction
of internal layers in the ML method.

Overall, we can conclude that the new ML method proposed in this paper is
significantly faster than the FD method, provides better accuracy, and represents
the solution in a semi-analytical form. The method’s speed is close to that for the
Radial Basis Functions (RBF) approach, [19, 17, 41], while other properties listed
above are superior to the RBF.
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[44] B. Stehĺıková and L. Capriotti, An Effective Approximation for Zero-Coupon Bonds and

Arrow-Debreu Prices in the Black-Karasinski Model, Int. J. Theor. Appl. Finance, 17 (2014),
1450037, 16 pp.

http://www.ams.org/mathscinet-getitem?mr=MR3502394&return=pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3253833
http://www.ams.org/mathscinet-getitem?mr=MR3618292&return=pdf
http://dx.doi.org/10.1007/978-1-4939-6792-6
http://dx.doi.org/10.1142/11623
http://dx.doi.org/10.1142/11623
http://www.ams.org/mathscinet-getitem?mr=MR3763049&return=pdf
http://dx.doi.org/10.1016/j.jocs.2017.02.003
https://arxiv.org/abs/2006.11976
https://arxiv.org/abs/2009.09342
http://www.ams.org/mathscinet-getitem?mr=MR3124899&return=pdf
http://dx.doi.org/10.1137/13091974X
http://www.ams.org/mathscinet-getitem?mr=MR2280299&return=pdf
http://dx.doi.org/10.1214/154957807000000013
http://www.ams.org/mathscinet-getitem?mr=MR1878627&return=pdf
http://dx.doi.org/10.1142/4694
http://dx.doi.org/10.2139/ssrn.3534445
http://dx.doi.org/10.2139/ssrn.3534445
http://www.ams.org/mathscinet-getitem?mr=MR4085818&return=pdf
http://dx.doi.org/10.1080/14697688.2020.1713394
http://dx.doi.org/10.1080/14697688.2020.1713394
http://www.ams.org/mathscinet-getitem?mr=MR742776&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4578-6
http://www.ams.org/mathscinet-getitem?mr=MR0457908&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2462653&return=pdf
http://dx.doi.org/10.1016/j.cam.2007.10.038
http://dx.doi.org/10.1016/j.cam.2007.10.038
http://www.ams.org/mathscinet-getitem?mr=MR1935578&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3740280&return=pdf
http://dx.doi.org/10.1093/imammb/dqw017
http://dx.doi.org/10.1093/imammb/dqw017
http://www.ams.org/mathscinet-getitem?mr=MR3264943&return=pdf
http://dx.doi.org/10.1142/S021902491450037X
http://dx.doi.org/10.1142/S021902491450037X


34 ANDREY ITKIN, ALEXANDER LIPTON AND DMITRY MURAVEY

[45] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Pergamon Press,
Oxford, 1963.

[46] C. Turfus, Analytic swaption pricing in the black-karasinski model, 2020, URL https://

papers.ssrn.com/sol3/papers.cfm?abstract_id=3253866, SSRN: 3253866.
[47] P. Verhulst, Notice sur la loi que la population suit dans son accroisseement, Correspondance

Mathematique et Physique, 10 (1838), 113–121.

Appendix A. Transformation of a non-divergent heat equation to a di-
vergent form. Consider the PDE in Eq.(27) which is a divergent form of the heat
equation

∂U(t, x)

∂t
=

∂

∂x

(
Ξ2(x)

∂U(t, x)

∂x

)
. (A.1)

In this Section we show how to transform it to a non-divergent form as in Eq.(26)
when the external boundaries are constant, i.e. y0(t) = χ−(t) = const, yN (t) =
χ+(t) = const. We start with making a change of variables x 7→ z = f(x) with

f(x) = c1 + c2

∫ x

0

1

Ξ2(k)
dk,

where c1, c2 are some constants. This transformation reduces Eq.(27) to

∂U(t, z)

∂t
= σ2(z)

∂2U(t, z)

∂z2
, (A.2)

σ(z) =
Ξ(x(z))

x′(z)
=

c1
Ξ(x(z))

.

The Eq.(A.2) is a non-divergent form of the heat equation. The only thing which
remains to be done is finding the dependence x(z). Obviously, it solves the equation

z = f(x) = c2 + c1

∫ x

0

1

Ξ2(k)
dk.

Given Ξ(x), it can be solved either numerically (so this dependence can be precom-
puted), or in some cases analytically. As an example, assume that Ξ(x) = e−ax, a =
const 6= 0, and also let c2 = 0. Then,

x =
1

a
log

(
1 +

a

c1
z

)
,

σ2(z) = c1(c1 + az).

Reverting these steps, we obtain the inverse transformation from a non-divergent
heat equation to a divergent one.

Also, the second continuity condition for Eq.(A.1) (an equality of fluxes over the
boundary) is given by Eq.(7) which, by using our notation in this Section, can be
re-written as

Ξ2
i (yi+1)

∂Ui
∂x

∣∣∣∣∣
x=yi+1

= Ξ2
i+1(yi+1)

∂Ui+1

∂x

∣∣∣∣∣
x=yi+1

, i = 1, . . . , N − 1. (A.3)

Using Eq.(A.2) this can be transformed to

∂Ui
∂z

∣∣∣∣∣
z=z(yi+1)

=
∂Ui+1

∂z

∣∣∣∣∣
z=z(yi+1)

, i = 1, . . . , N − 1, (A.4)

z(yi+1) = c2 + c1

∫ yi+1

0

1

Ξ2(k)
dk = c2 +

1

c1

∫ yi+1

0

σ2(k)dk.
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This is the continuity condition for Eq.(A.2).

Appendix B. Multilayer method for time-inhomogeneous coefficients and
the domain. In this section we generalize the ML method to the case σ = σ(τ, x).
We again consider the initial-boundary problem Eq.(4) for the differential operator
Li of the form Eq.(8) where now each operator Li reads

Li = − ∂

∂τ
+ σ2

i (τ, x)
∂2

∂x2
. (B.1)

As before, we look for the solution of the problem Eq.(4) in the form Eq.(6) such that
the conditions Eq.(7) still hold. Our goal is to show that under certain assumptions
the problem Eq.(4) with time and space dependent volatility σ(τ, x) can be reduced
to the corresponding time-homogeneous problem.

Suppose that for each sub-domain Ωi we can construct a map Mi transform-
ing Eq.(B.1) into PDE of the form Eq.(9). Then the solution of the transformed
PDE can be represented in the form of the heat potential Eq.(14), and then trans-
formed back by inverting the mapMi. More precisely, consider a collection of maps

{Mi}Ni=1 acting on triplets (τ, x, ui(τ, x))

(τ, x, ui(τ, x))
Mi7−−→ (Ti(τ),Xi(τ, x),Ui(Ti,Xi)) , Ti(0) = 0,

such that the function Ui(Ti,Xi) solves the following PDE with time-independent
coefficients

− ∂Ui
∂Ti

+A2(Xi)
∂2Ui
∂X 2

i

= 0. (B.2)

Also, let us denote the inverse map as Υi(τ, x), such that the following represen-
tation holds

ui(τ, x) = Υi(τ, x)Ui(Xi(τ, x), Ti(τ)). (B.3)

The map Mi transforms the sub-domain Ωi to the sub-domain Ξi

Ξi :
[
Y−i (Ti), Y+

i (Ti)
]
× R+

bounded by the curves Y−i (Ti) and Y+
i (Ti) which are defined as

Y−i (Ti) = Xi(λi(Ti), yi(λi(Ti))), Y+
i (Ti) = Xi(λi(Ti), yi+1(λi(Ti))).

Here λi is the inverse map T −1
i , i.e. λi(Ti) = τ(Ti) = T −1

i . Since the new time
variables Ti are different for each layer Ξi the transformed boundaries are different as
well, i.e., Y+

i (Ti) 6= Y−i+1(Ti+1). Also, the initial value function f(x) is transformed
to the function Fi

f(x)
Mi−−→ Fi(Xi), Fi(Xi) = f(ηi (Xi))/Υi(ηi (Xi)),

where ηi(x) solves the equation

ηi(x) : Xi(0, ηi(x)) = x.

Since the equations Eq.(B.2) are time-homogeneous, we can represent their so-
lutions in the form of Eq.(14)

Ui(Ti,Xi) =

∫ Ti
0

{
Φi(k)

∂G(Xi, ξ, Ti − k)

∂ξ

∣∣∣∣∣
ξ=Y−i (k)

(B.4)

+ Ψi(k)
∂G(Xi, ξ, Ti − k)

∂ξ

∣∣∣∣∣
ξ=Y+

i (k)

}
dk.
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Then making the inversion in Eq.(B.3), applying the chain rule

∂ui
∂x

= Ui(Ti(τ),Xi(τ, x))
∂Υ(τ, x)

∂x
+ Υ(τ, x)

∂Xi(τ, x)

∂x

∂Ui(Ti(τ),X )

∂X

∣∣∣∣
X=Xi(τ,x)

,

and taking into account the discontinuity of the layer potentials on the boundaries,
we arrive at the system of Volterra equations in Eq.(7).

The map Eq.(B) can be explicitly found via two different approaches. The first
is by application of Lie symmetry analysis. It is well known, that if Eq.(B.2) has six
or four independent groups of symmetries, it can be reduced to the heat or Bessel
PDE, see [14].

Another method is based on the theory of diffusion processes. Since any PDE of
the form Eq.(B.1) and Eq.(B.2) can be associated with some diffusion process, say
X = {Xt, t ≥ 0} for Eq.(B.1) and Y = {Yt, t ≥ 0} for Eq.(B.2), the map in Eq.(B)
can be found via reduction methods, see [36] and references therein. The terms
T (τ),Xi(τ, x) and Υi(τ, x) are interpreted as a scale, time and measure changes.

Appendix C. Coefficients of Eq.(78). By using the definitions of coefficients
of Eq.(78) given in Eq.(74) and Eq.(23) and tables of Laplace transforms we find

L(ηeveni ) = L


∞∑

n=−∞

e
− (2nli)

2

4σ2
i
t

σi
√
πt

 =
1

σi
√
λ

∞∑
n=−∞

e
−
√
λ|2nli|
σi

=
1

σi
√
λ

(
1 + 2

∞∑
n=1

e
− 2
√
λnli
σi

)
=

1

σi
√
λ

1 +
2e
− 2
√
λli
σi

1− e−
2
√
λli
σi


=

1

σi
√
λ

coth

(√
λli
σi

)
,

L(ηoddi ) = L


∞∑

n=−∞

e
− ((2n+1)li)

2

4σ2
i
t

σi
√
πt

 =
1

σi
√
λ

∞∑
n=−∞

e
−
√
λ|(2n+1)li|

σi

=
2e
−
√
λnli
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√
λ

∞∑
n=0

e
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√
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1
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√
λ

2e
−
√
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1− e−
2
√
λli
σi

=
1

σi
√
λ

1

sinh
(√

λli
σi

) ,
L(υ−(t|x0, 0)) = − 1

σ2
j

∞∑
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(yj − x0 + 2nli) e
−
√
λ
σj
|yj−x0+2nlj |

= − 1

σ2
j
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e
−
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λ
σj
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λ
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2nlj
+

1

σ2
j
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n=0

e
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λ
σj
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σ2
j

[
e
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lj
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sinh
(
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λ
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sinh

(
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√
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σj
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=
1

σ2
j

sinh
(
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√
λ

σj

)
sinh

(
lj
√
λ

σj
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L(υ+(t|x0, 0)) = − 1

σ2
j
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−
√
λ
σj
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σ2
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sinh
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sinh
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σ2
j

sinh
(
x0−yj)

√
λ

σj

)
sinh

(
lj
√
λ

σj

) .
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