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House Networks
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The global financial crisis of 2007–10 had enormous implications for
the financial ecosystem as a whole. Among many other changes to its
way of working, both the range of products and the number of trades
cleared by central counterparty clearing houses (CCPs) increased
enormously (see, for example, US Office of Financial Research 2017).
As a result, whether they like it or not, all large banks are engaged in
trading on CCPs.Accordingly, there is a clear need for banks to assess
any potential losses due to defaults of general clearing members
(GCMs) and CCPs through the CCP network they participate in.
The interconnectedness of the CCPs themselves, arising due to the
fact that they are linked through common clearing members, means
that it is important to model most of the network.

In this chapter, we take the perspective of a hypothetical banking
group, “XYZ Bank”, and explain how it may assess its risks based on
the partial information available to it. Typically, a banking group has
multiple subsidiaries, each of which are distinct clearing members.

Understanding the risk of XYZ Bank is a challenging task, which
requires analysing the contingent cashflows between a large num-
ber of agents (hundreds of GCMs operating on multiple CCPs) that
have a complex interrelationship. To describe this relationship ade-
quately requires capturing the dynamics of variation margin (VM),
initial margin (IM), default fund (DF), reassignment of trades in the
event of a member default and allocation of these default losses.
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Figure 16.1 A real-world network of CCPs (coloured circles) and
GCMs (grey dots) with corresponding edges denoting membership.
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These dynamics have to incorporate the feedback mechanism that
intrinsically links GCMs’ default, market turbulence and margin
calls on market participants. Furthermore, the fact that for large
GCMs central clearing may represent only a fraction of their broader
economic activity should be accounted for. Although the system of
interconnected CCPs is far too complex to be analysed analytically,
it is not beyond reach to study it numerically by developing simula-
tion models that capture the contingent cashflows (including those
related to margining and defaults) between all agents. Such mod-
els can contribute to better understanding of the following impor-
tant but complex issues related to the impact of central clearing on
over-the-counter (OTC) derivatives portfolios:

• identifying potential systemic risks and contagion introduced
by the interconnectedness of the system;
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• identifying potential liquidity risks driven by profit and loss
(P&L), margin calls, losses due to default and CCP recapitali-
sation;

• identifying the feedback loop between market volatility and
default likelihood;

• identifying the key points of failure;

• identifying the magnitude of sufficiently large scenarios for
XYZ Bank to incur a loss or suffer liquidity issues.

The corresponding CCPs and their GCMs for a real-world CCP
network are shown in Figure 16.1.

Below, we describe a model that analyses the entire network
of CCPs and GCMs. Given the size and intricacy of this net-
work, the model is naturally complex, yet it yields some important
insights, both qualitative and quantitative. In particular, it shows
that there are material cross-risks between defaults of GCMs and
market volatility that must be captured in order to realistically assess
default losses and contingent liquidity requirements. Interestingly,
the results of our calculations contradict the oft-repeated claim that
the move from bilateral clearing to central clearing of OTC deriva-
tives poses a significant threat of contagion through the central coun-
terparties. Our conclusion is predominately due to the fact that the
risks attributable to clearing are comparatively small compared with
those attributable to the capital held by the diversified financial
institutions dominating the CCP landscape, such as XYZ Bank.

In this chapter, which is an extended and updated version of
Barker et al (2017), we develop a simulation framework to investi-
gate all the risks associated with central clearing mentioned earlier.
Additional information can be found in Chapters ?? and 11. Our
approach uses the minimum amount of information necessary to
analyse the risk of default contagion and liquidity crunches in the
CCP framework, but still allows a realistic simulation of possible
stressed situations. It is clear that for every GCM that defaults in a
specific market scenario, we need to model the loss over IM and DF
in each CCP it participates in, and allocate that loss to other GCMs,
including XYZ Bank. We also need to model the actual GCM default
given a market scenario, and link this to the reduction in the XYZ
Bank’s capital due to losses on a number of CCPs.
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This chapter is organised as follows. In Section 16.1, we present
a literature overview. In Section 16.2, we discuss the challenges
that have to be addressed in the process of building a theoretically
adequate and practically relevant model of central clearing. In Sec-
tion 16.3, we qualitatively describe various VM, IM and DF calcula-
tions performed by CCPs. In Section 16.4, we present the process gen-
erating the portfolios of clearing members, given the partial infor-
mation that a particular GCM possesses. In Section 16.5, we discuss a
simple adaptation of the model for Comprehensive Capital Analysis
and Review (CCAR) purposes. In Section 16.6, we demonstrate how
to simulate the underlying market variables and the feedback mech-
anism used to generate realistic codependency between volatilities
and defaults. We present numerical results in Section 16.7. Finally,
we draw some conclusions in Section 16.8.

16.1 LITERATURE OVERVIEW
Early models quantifying potential exposure of CCPs can be divided
into three main categories:

1. statistical models;

2. optimisation models;

3. option pricing based models.

Statistical models assumed simple underlying dynamics, such as
geometric Brownian motion, and derived the probability for the IM
to be exceeded within a given time horizon. For instance, Figlewski
(1984) calculated the probability of a margin call given a certain
percentage of VM and IM.

Optimisation models calculated margins in a way that balances
the resilience of CCPs and costs to their members. For example, Fenn
and Kupiec (1993) and Baer et al (1996) built models along these lines
by minimising the total sum of margin, settlement and failure costs.

Option pricing based models explored the fact that the exposure
profile of a CCP is approximately equivalent to a combination of
call and put options because a GCM can strategically default if
the contract loses more value than the posted IM. (This is largely
a theoretical possibility.) Day and Lewis (1999) used this framework
and estimated prudent margin levels for specific instruments.

When designing its defences, a CCP has to analyse losses con-
ditional on exceeding margins. By its very nature, extreme-value
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theory (EVT) can be used for this purpose; it has been exploited
by several researchers (see, for example, Longin 1999; Broussard
2001). While the use of EVT to set up margins for a single contract
is straightforward, it is much more difficult to do this at a portfolio
level.Accordingly, CCPs tend not to use EVT directly, relying instead
on the intuitive standard portfolio analysis of risk (SPAN) method-
ology and its variations (see Kupiec 1994). In practice, SPAN has
severe limitations when applied to complex portfolios. The value-
at-risk-based (VaR-based) IM system, which is better suited for such
a task, was discussed by Barone-Adesi et al (2002).

More recently, some fundamental topics related to the clearing
process have come into focus. For instance, Duffie and Zhu (2011)
questioned the premise that central clearing of OTC derivatives can
substantially reduce counterparty risk. They argued that some of
the expected benefits are lost due to the fragmentation of clear-
ing services, since there is no allowance for interoperability across
asset classes and/or CCPs. They argued that the benefit of multilat-
eral netting among many clearing participants across a single class
of derivatives over bilateral netting between counterparties across
assets depends on the specifics of the clearing process and could be
absent in practice.

Arnsdorf (2012) showed that a clearing GCM’s CCP risk is given
by a sum of exposures to each of the other clearing members, which
arises because of the implicit default insurance that each member
has provided in the form of mutualised, loss sharing collateral (see
also Chapter ??). He calculated the exposures of GCMs by explicitly
modelling the capital structure of a CCP as well as the loss distribu-
tions of the individual member portfolios. Arnsdorf assumed that
all GCMs are equivalent, which is not the case in practice.

Borovkova and El Mouttalibi (2013) used a network approach to
analyse systemic risk in CCPs and showed that the effect of CCPs on
the stability of the financial system is rather subtle and not necessar-
ily net positive. They argued that stricter capital requirements have
a more beneficial impact on the system than mandatory clearing
through CCPs.

Cont and Avellaneda (2013) developed an optimal liquidation
strategy for a defaulted GCM portfolio that is based on auction-
ing parts of the portfolio, unwinding other parts and selling the rest
on the market. They modelled an auction with limits on how many
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positions can be liquidated on a given day due to liquidity consider-
ations, and determined an optimal sale strategy to minimise market
risk by using linear programming.

Cumming and Noss (2013) assessed the adequacy of CCPs’
default resources and concluded that the best way to model a CCP’s
exposure to a single GCM in excess of its IM and DF contribution
is to use EVT. They drew a simple analogy between the risk faced
by a CCP’s default fund and that borne by a mezzanine tranche
of a collateralised debt obligation (CDO) and used an established
framework to model codependency of defaults based on a gamma
distribution. Their model is a useful step towards building a proper
top-down statistical framework for evaluating the risk of a CCP’s
member exposures.

Glasserman et al (2015) discussed systemic risks in markets cleared
by multiple CCPs. The desire to minimise liquidity add-ons creates
incentives for swaps dealers to split their positions between multiple
CCPs. As a result, potential liquidation costs are hidden from indi-
vidual CCPs, so that, as a group, they tend to underestimate these
costs.

Murphy and Nahai-Williamson (2014) discussed approaches to
the analysis of DF adequacy, and analysed various design choices
and regulatory constraints for the default waterfall. They concen-
trated on the “cover 2” requirement because it is a minimum inter-
nationally acceptable standard for a CCP. They showed how to use
market data to estimate the complete distribution of a CCP’s stressed
credit risk and studied the prudence of “cover 2” as a function of the
number of GCMs.

Elouerkhaoui (2015) developed a method for calculating credit
value adjustment (CVA) for CCPs using the Marshall–Olkin corre-
lation model for CDOs and derived the master equations for bilateral
CVA, funding value adjustment (FVA) and margin value adjustment
(MVA). By its very nature, his approach suffers from the fact that it
assumes the defaults of GCMs (and hence of the CCP itself) to be
idiosyncratic and hence not directly linked to the behaviour of the
underlying cleared product.

Ghamami (2015) introduced a risk measurement framework that
coherently specifies all layers of the default waterfall resources of
typical derivatives CCPs, and produced a risk sensitive definition of
the CCP risk capital.
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Armenti and Crepey (2017) challenged the “cover 2” and IM pro-
portional rules for the respective sizing and allocation of the default
fund, and instead proposed economic capital specifications based on
expected shortfalls of the one-year-horizon P&L of the CCP. They
also proposed an IM-raising strategy where the clearing member
delegates the posting of its IM to a specialist lender, and showed
that this strategy results in a significant MVAcompression compared
with the classical approach.

Barker et al (2017) proposed a model for the credit and liquidity
risks faced by GCMs of the network of CCPs. By considering this
network in its entirety, they investigated the distribution of losses
to default fund contributions and contingent liquidity requirements
for each GCM. They concluded that liquidity risks (margin calls) are
more dangerous to large diversified GCMs than credit risks.

Berlinger et al (2017) analysed the effects of different margin strate-
gies on the loss distribution of a CCP during different crises and
found that anti-cyclical margin strategies might be optimal not only
for regulators aiming to reduce systemic risk, but also for CCPs
focusing on their micro-level financial stability.

Menkveld (2017) emphasised the fact that CCP risk management
does not account for risks associated with crowded positions. He
proposed an exposure measure based on tail risk in trader portfolios,
which identifies and measures crowded risk and assigns it to traders
according to the polluter-pays principle.

Lipton (2018) analysed the pros and cons of moving trade exe-
cution, clearing and settlement to blockchain and concluded that
the advantages of such a move are not as clear-cut as its propo-
nents claim. Still, by using permissioned private ledger(s), costs can
potentially be cut and the speed of clearing and settlement somewhat
increased while the number of failures can be reduced.

16.2 CHALLENGES OF CENTRAL COUNTERPARTY
CLEARING HOUSE MODELLING

In order to build a proper model for a CCP, or, even harder, a system
of CCPs, a modeller needs to describe the following effects:

• the asymmetry of information due to the fact that a GCM
is exposed through its DF to losses on a proportion of the
defaulting members’ entire portfolio;
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• a feedback mechanism that intrinsically links GCM default,
market turbulence and liquidity calls on market participants,
so that expected loss becomes strongly path dependent;

• the individual nature of different GCMs, varying from large
diverse financial institutions where clearing makes up a small
amount of their business, to proprietary funds for which a
default event will be driven purely by margin calls on cleared
trades;

• the individual aspects of each CCP, including their IM and
DF methodologies, loss allocation process, assessment and
waterfall rights;

• the interconnectedness of the CCPs themselves due to the fact
that the default of a major GCM is likely to affect several CCPs
simultaneously and may have “knock-on” effects;

• the changes in IM and DF requirements as the system evolves,
which are particularly important for liquidity considerations.

The complexity of the model and the need to examine extreme events
imply that there is a large computational effort required to use it in
practice.

Assuming that (some of) these effects are properly modelled, the
following key topics regarding CCP risk can be addressed:

• estimating the total CCP portfolio given the asymmetry of
information;

• identifying potential causes of defaults and the corresponding
default scenarios;

• analysing market circumstances, given the strong interlink
between market volatility and GCMs defaults, which could
challenge the stability of the CCP;

• understanding implications of the CCP default for a given
GCM;

• evaluating the increase in risk for a specific GCM, given the
interconnectedness of a market with multiple CCPs all with
the same set of GCMs;

• identifying the benefits (if any) of using multiple CCPs to
clear the same trade type, given the interconnectedness of the
system;
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• finding the expected and 99th-percentile cumulative loss up
to a time horizon, T, from a GCM’s CCP exposures (hits to
default funds and possible CCP failures);

• estimating the expected and 99th-percentile cumulative call on
liquidity up to a time horizon, T;

• estimating the liquid capital a bank would require to survive
a large systemic disturbance;

• identifying the indicators that could be used to predict a large
disturbance;

• determining which GCM (or set of GCMs) represents the
largest systemic risk should it (they) default (including parent
versus legal entity);

• identifying the weakest CCP and that with the largest systemic
impact should it fail;

• ordering CCPs in terms of risk and systemic impact;

• determining the tipping point in terms of the number of
defaults and market moves that would lead from a simple loss
scenarios to a systemic failure;

• analysing the impact of various changes to the way CCPs
operate on the system as a whole and an individual GCM’s
risks.

While analysing these topics in their entirety is very difficult, we can
make some progress along the lines described below.

16.3 MARGIN CALCULATION

To protect themselves against the adverse impact of a GCM default,
CCPs set up extensive processes requiring their GCMs to post VMs,
IMs and DF contributions in order to cover the mark-to-market
(MtM) moves of the GCMs’ exposures, as well as any eventual losses,
which would be distributed between the defaulter, the survivors and
the CCP itself. In order to build a useful model for a given set of
market data and a portfolio of trades, we need to design a fast and
accurate calculation procedure for VMs, IMs and the DF for the total
set of GCM portfolios on a given CCP.
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16.3.1 Variation margin
First, we represent the state of the market at time t by X(t) =
(X1(t), . . . , Xn(t))T, where Xi(t) corresponds to a financial quantity
of importance, such as a par swap rate, spot foreign exchange (FX)
rate or credit spread. The actual model for the generation of the
corresponding scenarios is described in Section 16.6.

The calculation of the incremental VM called over the time interval
[ti, ti+1] for the portfolio held by the kth GCM of the jth CCPj is
straightforward. It is given by the change in its MtM

VM
CCPj

GCMk
(ti+1)−VM

CCPj

GCMk
(ti)

=
∑

φ∈ΦCCPj
GCMk

Vφ(X(ti+1), ti+1)−Vφ(X(ti), ti) (16.1)

where the summation is over all trades,φ, in the portfolioΦ
CCPj

GCMk
that

GCMk holds with CCPj at time ti, and Vφ(X(t), t) is the value of trade
φ at time t in market state X(t). Below we use the shorthand notation
VMj

k for VM
CCPj

GCMk
, and similarly for other quantities of interest. For

brevity, we suppress the superscript j when there is no ambiguity.
VMs are symmetric and can be paid by both GCMs and CCPs.

16.3.2 Initial margin
The rationale behind the IM charge is that it covers the period
between the default and the sell-off of the defaulter’s positions. For
OTC derivatives this period is typically five days. The Committee
on Payment and Settlement Systems–Technical Committee of the
International Organization of Securities Commissions (2012, p. 50)
articulated the IM requirements as follows:

a CCP should adopt initial margin models and parameters that are
risk-based and generate margin requirements sufficient to cover its
potential future exposure to participants in the interval between
the last margin collection and the close out of positions following
a participant default.

Every CCP has its own margining methodology (see, for example,
Chapter 2), but a typical IM calculation is split into a VaR or condi-
tional VaR (CVaR) component and a set of add-ons. The VaR/CVaR
component is calculated across the portfolio losses as follows:

(i) a set of scenarios is created by looking at a time series of five
days’ changes in market data over some historic period;
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(ii) these changes are weighted by a multiple of the ratio of current
realised volatility to historic realised volatility;

(iii) new scenarios are created by using the current market data
and the set of market changes;

(iv) the five-day loss on the portfolio for each scenario is calculated;

(v) the VaR or CVaR components are calculated using these.

Typical add-ons intended to cover various non-linear effects
include:

• a liquidity add-on, reflecting the fact that larger portfolios are
difficult to off-load in a timely fashion;

• a basis add-on, accounting for tenor basis exposure and similar
effects;

• a diversification add-on offsetting diversification benefit on
illiquid currencies;

• an unscaled VaR/CVaR floor, which is set at VaR/CVaR
calculated without volatility scaling to reduce procyclicality.

IMs are asymmetric and are paid only by GCMs to CCPs.
To accelerate the calculations of IMj

k for the kth GCM of the jth
CCP, the VaR/CVaR component is often approximated by using
regression against a collection of carefully chosen representative
portfolios that are sufficiently small so as to not incur any add-ons,
while the add-ons are applied deterministically. Thus, the IM for a
given portfolio is calculated as follows

IMj
k(t) = VaR({X(u)}u�t; a(t))+AddOn(t) (16.2)

where a(t) = (a1(t), . . . , an(t))T represents the regression coefficients
of the portfolio held at time t against the small benchmark portfolios
for which IM has been calculated exactly by using information pro-
vided by the CCP. Here VaR({X(u)}u�t; a(t)) denotes the VaR com-
ponent of the IM for a portfolio represented by the regression coef-
ficients and adjusted for new simulated market data by taking into
account the change in the ratio of current market volatilities to his-
toric volatilities and replacing one of the VaR or CVaR elements if
the new scenario creates a loss large enough to warrant such a step.
The contribution to the volatility of the add-on in Equation 16.2 is
thus virtually always ignored and it is frozen at its initial value.
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Procyclicality in IM calculation emerges from the following con-
siderations. When markets go into a stressed period, IM require-
ments increase, so GCMs get liquidity calls at the worst possible
time. There are two main sources of procyclicality:

1. an increase in the volatility multiplier accounting for current
market volatility relative to its historic level;

2. the introduction of new extreme moves to the tail of the loss
distribution.

The second effect is particularly dangerous, since it occurs simulta-
neously with a large VM call.

Until now, examples of IM failures have been few and far between.
We give one such example, which illustrates the above points. In
2010, HQ, a Stockholm-based bank, collapsed due to a large posi-
tion in strike spread volatility plays on Eurex. The Eurex model
did not account for the difference in volatilities across different
strike positions for equity options. As a result, HQ had very low IM
requirements but ran up equity losses of Skr1.17 million (US$175 mil-
lion), well above their margin requirements. Plaintiffs commissioned
an expert report, which concluded that Eurex did not sufficiently
account for the vega and skew risks, and did not charge enough to
compensate for the portfolio’s high concentration risks (see Clancy
2016).

16.3.3 Default fund
The DF is typically based on a set of stressed scenarios including
historic and hypothetical market moves applied to current market
data. For example, in 2012 the European Commission introduced its
European Market Infrastructure Regulation (European Parliament
and the Council of the European Union 2012), which require a CCP
to have sufficient collateral across its IM and DF to cover the simul-
taneous defaults of two of its largest GCMs under a range of severe
but possible historic and hypothetical market scenarios.

The calculation of the DF can be performed as follows:

(i) for each GCM portfolio, the IM is computed;

(ii) the set of stressed scenarios is applied, and for each scenario
any loss on the GCM portfolios is calculated;

(iii) the corresponding margin shortfall is given as (MtM loss+IM)
if MtM is negative;
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(iv) the two biggest losses are then summed, and the maximum
of these sums over all scenarios minus any CCP “skin in the
game” (capital) gives the DF;

(v) the relative contribution of each GCM to the DF is computed
in proportion to its IM contribution to the total IM.

The total DF for CCPj at time t, DFj(t), is given by a “cover 2”
principle

DFj(t) = max
ϑ∈Sj

max
k≠l
[LOIMj

k(t,ϑ)+ LOIMj
l(t,ϑ)− Υj]+ (16.3)

where the maximum is taken over all stress scenarios, Sj, and distinct
pairs of GCMs (k, l), Υj is the CCP’s “skin in the game” and the losses
over initial margins (LOIM) are given by

LOIMj
γ(t,ϑ) =

[ ∑
φ∈Φj

γ(t)

(Vφ(t, X(t))−Vφ(t, Xϑ(t)))+ IMj
γ(t)

]+
(16.4)

where γ = k, l. Here the summation is preformed over trades φ
in the portfolio Φj

γ(t), and Vφ(t, Xϑ(t)) and Vφ(t, X(t)) are, respec-
tively, the values ofφ at time t in market state X(t)with and without
the stress scenario, ϑ, applied. Although CCPs define a large set of
stress scenarios, there are few “binding” ones, so the original set may
be replaced with a fairly small subset. We checked this observation
experimentally by analysing thousands of actual and randomly gen-
erated realistic portfolios and examining which scenarios generated
the largest losses. A very high proportion of the scenarios used by
the CCP were never binding.

The DF is asymmetric and is paid only by GCMs to CCPs.
To make our simulations as realistic as possible, we used the meth-

ods of allocating the DF between the members that were prescribed
by the CCPs themselves. To achieve a “cover 2” criterion, CCPs bal-
ance IMs and DF amounts. For every dollar decrease in DF there
is a need for a considerably larger dollar increase in IM. As a rule
of thumb, the ratio is $1 to $10. Large IMs and a small DF result in
a very low risk of loss to survivors’ DFs, but very high margining
requirements. In other words, low credit risk implies high liquidity
risk. Small IMs and a large DF result in a low risk of large calls on liq-
uidity from day-to-day margining, but significantly greater chances
of the need to replenish the DF. Not surprisingly, high credit risk
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Table 16.1 CCPs’ provided data

CCP provided︷ ︸︸ ︷
CCP IM Top 5 Top 10

CCP total CCP DF IM (%) IM (%)

LCH 115,545,868,500 6,524,419,500 24.82 40.88
CME IRS 24,837,454,393 2,632,833,613 68.57 91.74
CME Base 84,570,587,715 3,654,030,732 51.70 76.41
CME CDS 1,393,981,721 650,000,000 73.50 N/A
ICE Clear US 15,808,205,520 415,067,300 59.37 83.06
ICE Clear Europe 38,211,320,837 1,900,000,000 36.37 54.99
ICE Clear Credit 24,511,892,147 1,972,670,844 55.00 74.00
OCC 50,136,632,269 7,940,558,697 45.00 63.00
Nodal Clear 191,221,324 129,903,367 75.40 N/A
MGEX 305,331,089 56,355,000 88.26 N/A
NGX 1,740,350,386 275,633,878 24.70 40.30
NSCC 5,272,000,000 834,970,830 29.00 47.00
FICC–GSD 11,853,000,000 1,877,258,962 36.00 50.00
FICC–MBSD 4,437,000,000 702,724,881 43.00 54.00

Total 378,814,845,901 29,566,427,603

Source: central counterparty clearing houses

implies low liquidity risk. When designing its defences, CCPs need
to balance credit risk with liquidity considerations.

16.3.4 Analysis of CCPs’ provided data

Typical total IMs and DF for several representative CCPs are shown
in Table 16.1.

In order to process the above information, we postulate that ini-
tial margins are exponentially distributed with the rank of GCMs.
More specifically, to each CCP, j, and GCM, k ∈ 1, . . . , Kj, we assign
a rank Γ j

k ∈ {1, . . . , Kj}, based upon data sourced from publicly
available information, such as financial statements. For a given
CCP, we fit a two-parameter exponential distribution to the gross
notional of the members, motivated by the analysis of Murphy and
Nahai-Williamson (2014)

IMk = αe−βΓk (16.5)
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Table 16.2 Values of β5, β10 and β∗, which characterise the
exponential distribution of IMk

CCP β5 β10 β∗

LCH 0.0571 0.0526 0.0548
CME IRS 0.2315 0.2494 0.2404
CME Base 0.1455 0.1444 0.1450
CME CDS 0.2656 — 0.2656
ICE Clear US 0.1801 0.1775 0.1788
ICE Clear Europe 0.0904 0.0798 0.0851
ICE Clear Credit 0.1597 0.1347 0.1472
OCC 0.1196 0.0994 0.1095
Nodal Clear 0.2805 — 0.2805
MGEX 0.4284 — 0.4284
NGX 0.0567 0.0516 0.0542
NSCC 0.0685 0.0635 0.0660
FICC–GSD 0.0893 0.0693 0.0793
FICC–MBSD 0.1124 0.0777 0.0950

Source: central counterparty clearing houses

Accordingly, for large K

IMtot =
K∑

k=1

IMk = α(1− e−Kβ)
eβ − 1

≈ α
eβ − 1

,

∑
{k|1�Γk�5}

IMk = α(1− e−5β)
eβ − 1

,

∑
{k|1�Γk�10}

IMk = α(1− e−10β)
eβ − 1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16.6)

In order to calibrate β, two auxiliary exponents, β5 and β10, are com-
puted from the above equations and the proportional allocation to
top-five and top-ten IMs, as publicly reported by the CCPs

φ5 =
∑
{k|1�Γk�5} IMk

IMtot
, φ10 =

∑
{k|1�Γk�10} IMk

IMtot

φ5 = (1− e−5β5), β5 = − ln(1−φ5)
5

φ10 = (1− e−10β10), β10 = − ln(1−φ10)
10

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16.7)

The final exponent, β∗, is based on the average of β5 and β10

β∗ = 1
2(β5 + β10) (16.8)
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while α is determined as follows

α = IMtot(eβ
∗ − 1) (16.9)

As shown in Table 16.2, for most CCPs, β5 and β10 are very close;
thus, the use of the exponential distribution is justified.

16.3.5 The end of the waterfall

What happens at the end of the waterfall is not always sufficiently
clearly articulated by CCPs, at times deliberately. In general, if the IM
and DF contributions of the defaulter, as well as the DF contributions
of survivors and CCP’s own “skin in the game”, are not enough to
alleviate the entire loss due to default, the following steps can be
taken:

(i) the DF is reassessed, allowing the CCP to ask for extra contri-
butions to the DF (known as unfunded DF) upon the default
of one or more GCMs, which are typically capped at three to
four times the original DF;

(ii) a VM gains haircut (VMGH) allows the CCP not to return the
full gains on any GCM positions that are in profit, usually
capped at half the current DF or a time-cap;

(iii) an IM haircut allows the CCP to use a proportion of surviving
members IM to cover the loss;1

(iv) a partial tear-up results in the unwinding of all the defaulting
members’ trades, which may leave surviving GCMs with large
unwanted IM/Risk positions;

(v) full tear-up results in the unwind of all cleared trades;

(vi) the CCP unwinds, resulting in all surviving GCMs going back
to bilateral arrangements or novating trades to another CCP;

(vii) GCMs step in and take over running of the CCP;

(viii) the government takes responsibility for the CCP.2

Possible actions of CCPs and their GCMs are summarised in
Figure 16.2.
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16.4 GENERAL CLEARING MEMBERS’ PORTFOLIOS
Portfolios of typical GCMs consist of numerous long and short trades
with slightly different characteristics (eg, maturity and coupon),
which partially cancel each other. We refer to the total notional over
long and short positions as the “gross” notional, and the difference
as the “net” notional. We emphasise that risks are ultimately deter-
mined by net positions, so net notionals are of primary concern;
however, gross notionals should not be discarded, since they pro-
vide useful and important information on accumulated historical
volumes.

Under normal circumstances, XYZ Bank deals only with CCPs.
However, it becomes potentially exposed to the positions of other
members in the event of their default; yet, these positions are pur-
posely obfuscated by CCPs, and hence unknown to GCMs, includ-
ing XYZ Bank. Typically, CCPs publish gross notionals aggregated
across all members for certain categories of derivatives that are dis-
criminated by the type of trade, currency and tenor. A representative
example would be the aggregate gross notional for fixed versus six-
month floating Euro Interbank Offered Rate swaps for tenors in the
range of 2Y to 5Y (alongside other aggregates). We use these aggre-
gates as a measure of the relative scale of the exposures of the CCP
to different trade types, currencies and tenors.

To exploit all relevant available information, we align our method-
ology to the categorisation used by the CCPs when reporting the cor-
responding aggregate gross notionals. To this end, we fix a particular
category, π ∈ Π, where Π is the set of all categories for which the
CCP under consideration discloses aggregate gross notionals. We
develop a randomisation scheme exploring the space of valid con-
figurations of the unknown positions of other GCM’s, satisfying the
known constraints, including values related to XYZ Bank’s positions
and the aggregate gross notionals published by the CCPs. As before,
the gross notional for all GCMs and for XYZ Bank can be written in
the form

K∑
k=1

απ exp(−βπΓk) = Nπ ,

∑
k∈κXYZ

απ exp(−βπΓk) = Nπ
XYZ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(16.10)

where κXYZ is the set of indices of XYZ Bank’s members,3 and Nπ

and Nπ
XYZ are the gross notionals for category π aggregated over all
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members and XYZ Bank’s members, respectively. System 16.10 of
equations forαπ ,βπ is easily solved numerically. The corresponding
fitted net notional for k is written as

Nπ
k = απ exp(−βπΓk) (16.11)

We wish to generate randomised net notionals, {∆πk }K
k=1 in such a

way that
K∑

k=1

∆πk = 0 (16.12)

so that the CCP is market neutral, and

∆πk ∈ Nπ
k IR, ∀k ∉ κXYZ, ∆πk = δπk , ∀k ∈ κXYZ (16.13)

where R ∈ [0, 1] is a parameter controlling the relative size of the net
and gross positions, IR is the interval [−R, R] and {δk}k∈κXYZ are the
known net positions for XYZ Bank’s members. Roughly speaking, R
is a proportional trading delta limit that, for reasons of parsimony,
is assumed to be independent of k andπ . This assumption could be
easily removed if necessary.

In order to generate unknown positions ∆πk , k ∉ κXYZ, in such
a way that conditions 16.12 and 16.13 are satisfied, we introduce
the negative total sum of all known positions, ∆̄π = −∑k∈κXYZ

δπk ,
define the ratio rπ = ∆̄π/∑k∉κXYZ

Nπ
k and allocate ∆̄π proportionally

between GCMs with k ∉ κXYZ, ∆̄πk = rπNπ
k . Since none of the clear-

ing members, including XYZ Bank, dominates any particular CCP,
we can assume without loss of generality that |rπ | < R. For each k ∉
κXYZ we consider the interval IπR−|rπ | = [−(R−|rπ |), (R−|rπ |)] and
generate independent random numbers uπk uniformly distributed on
IπR−|rπ |. We define the following quantities

Uπ =
∑

k∉κXYZ

uπk Nπ
k , Vπ =

∑
k∉κXYZ

uπk Nπ
k χuπk U>0, Wπ = Uπ

Vπ

(16.14)
where χ is the indicator function. Since uπk possesses a density, it
is clear that Vπ ≠ 0 almost surely, so that Wπ is well defined, and
0 < Wπ � 1. Finally, we define the net position of the kth GCM as
follows

∆πk = ∆̄πk +uπk (1−Wπχuπk Uπ>0)Nπ
k = (rπ+uπk (1−Wπχuπk Uπ>0))Nπ

k

(16.15)
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Our algorithm implies that we proportionally reduce positions for
GCMs with uπk having the same sign as Uπ , and keep positions for
other GCMs fixed. A simple calculation yields∑

k∉κXYZ

∆πk = ∆̄π +Uπ − Uπ

Vπ Vπ = ∆̄π (16.16)

so that condition 16.12 is satisfied, and

|∆πk | = |∆πk − ∆̄πk + ∆̄πk |
� |∆πk − ∆̄πk | + |∆̄πk |
� |uk| + |rπ |Nπ

k � (R− |rπ | + |rπ |)Nπ
k

= RNπ
k , (16.17)

so that condition 16.13 is also satisfied.

16.5 COMPREHENSIVE CAPITAL ANALYSIS AND REVIEW
STRESS ANALYSIS FOR CENTRAL COUNTERPARTY
CLEARING HOUSES

For a lot of CCAR-related analysis, we need only to look at individual
CCPs in isolation and calculate the expected loss for XYZ Bank given
a set of GCM defaults and a pre-specified market shock. To do this
we

(i) construct a set of scenarios that includes the Federal Reserve
adverse and severely adverse scenarios,

(ii) calculate the present value (PV) with current and stressed
market data for each portfolio of the defaulting GCMs,

(iii) calculate total losses via the difference in the PV with cur-
rent market data (representing default time) and the PV with
shocked data (representing the market at time of resolution),
since the VM covers any losses before the default,

(iv) sum all losses for defaulted GCMs,

(v) run through the waterfall process, calculating all losses over
the defaulter’s IM, the DF and the CCP’s “skin in the game”,

(vi) calculate XYZ Bank’s portion of the losses,

(vii) repeat the procedure for a number of randomly drawn port-
folio configurations and calculate the expected loss given by
the average of these results.
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One interesting alternative approach is to model LOIM by using
the CCP’s own estimates, in the spirit of Arnsdorf (2012) and Chap-
ter ?? of this volume. In this approach, a typical CCP uses a “cover 2”
framework for modelling DF, and loss given default for each GCM,
k, is considered proportional to its IMk contribution. Thus, loss to the
DF caused by the default of the largest GCM is 1

2 DFtot. A fractional
contribution to the total IM pool for the kth GCM, ωk, is defined as
follows

ωk = IMk

IMtot
= exp(−β∗Γk)(eβ

∗ − 1) (16.18)

In the case of default, the loss given default (LGD) of the kth GCM
is approximated as a fraction of 1

2 DF, which is associated with the
loss of the biggest GCM. Accordingly

LGDk = DF
2

ωk

ω{k|Γk=1}
= 1

2 DF exp(−β∗(Γk − 1)) (16.19)

The fraction of loss attributable to XYZ Bank is proportional to its
fraction of the total IM pool

LGDk,XYZ = DF
2

exp(−β∗(Γk − 1))
IMXYZ

IMtot
(16.20)

This expression is particularly useful, since it does not require
knowledge of the actual rank of the XYZ Bank.

Since, in the approach under consideration, defaults and losses
are independent, the expected losses to XYZ Bank can be written in
the form

lossXYZ =
∑

k∉κXYZ

LGDk,XYZ

∑
�∈Ωk

p� (16.21)

where Ωk is the set of all subsets of GCMs containing the kth GCM,
� is a subset and p� is the probability that all GCMs from this subset
default while all other GCMs survive. The probability p� has to be
calculated by using a copula-based approach.

Since the above derivation is based on very conservative assump-
tions, it produces a very rough (but still useful) upper bound for the
expected loss.

16.6 SCENARIO GENERATION
16.6.1 Motivation
In this section, we build a model for the underlying market the model
is used later in Section 16.7 to describe the contingent cashflows in
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the system of GCMs whose initial positions are generated according
to the scheme presented in Section 16.4. Our model has to be suffi-
ciently rich in order to support jumps, describing large changes in
the market variables on short timescales, including systemic jumps
affecting all market variables simultaneously; it also has to account
for the fact that periods of high default rates, such as the global finan-
cial crisis, are accompanied by high market volatility. To accommo-
date these requirements, we develop a regime-switching model with
regimes driven by the number and size of realised defaults.

16.6.2 Regime-dependent drivers

To reflect the fact that the GCMs of interest have different sizes, we
introduce weights wk > 0, representing the financial significance of
the kth GCM, k = 1, . . . , K, to the ecosystem. Specifically, we assume
that wk are proportional to the balance-sheet assets of the kth GCM
and normalise it in such a way that

∑
k wk = 1.

We use wk to build a stress indicator, Ξt, of the form

Ξt =
∑

k

wk exp(−κ(t− τk))χτk<t (16.22)

where χ· is an indicator function, τk is the default time of GCMk

and κ represents a rate of mean reversion from a stress state to equi-
librium and is set to 1 in the following. The indicator Ξt, represent-
ing the materiality-weighted defaults prior to time t, is sandwiched
between 0 and 1, ie, 0 � Ξt � 1.

We introduce thresholds 0 < m1 < m2 < · · · < mS = 1, and define
the integer-valued stress state process, ξm

t by

ξm
t =

⎧⎨⎩1, Ξt � m1

i, mi−1 < Ξt � mi, i � 2
(16.23)

In each of the S stress states, we use volatility multipliers 1 = Λ1 <
· · · < ΛS. In practice, choosing S = 2 is often sufficient.

We define a regime-dependent Wiener driver, Wξm

t with ξm
t -

dependent volatilities Λξm
t

d〈Wξm
, Wξm〉t = Λ2

ξm
t

dt (16.24)

We also define a regime-switching compound Poisson driver, Nξm

t ,
with ξm

t -dependent intensities λΛξm
t

, and the jump distribution of
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the form eZ − 1, where Z ∼ N(µ,σ) (see, for example, Inglis et al
2008). We assume that Nξm

t is compensated, so that it is a martingale

E[Nξm

u −Nξm

t | Ft] = 0 (16.25)

for u � t. We use these drivers below to describe the dynamics of
the relevant market variables.

Since losses on default and liquidity drains are primarily driven
by increments in the value of portfolios over short time horizons, we
can neglect measure-dependent drifts and second-order convexity
adjustments. In the spirit of Lipton and Sepp (2009), we assume
that all processes have a sensitivity to a common regime-dependent
Poisson process that we denote by N

sys,ξm

t .

16.6.3 Rates process
We assume that interest rates in the ith economy have a simple Hull–
White-inspired dynamics

dri
t = dφi

t + dX1
t + dX2

t + βiri
t− dN

sys,ξm

t + ri
t− dNi,ξm

t (16.26)

where φi
t is deterministic and used to fit the initial term structure;

X1
t and X2

t are Ornstein–Uhlenbeck processes driven by regime-
dependent correlated Wiener processes W1,ξm

t and W2,ξm

t , which are
used to control the relative volatility of rates of different tenors
and intracurve spread volatilities, while compound, compensated,
regime-dependent Poisson processes N

sys,ξm

t and Ni,ξm

t represent sys-
temic and idiosyncratic jumps, respectively; βi is the sensitivity of
rates to the systemic jump process; and t− denotes left-hand limit.
In the spirit of our analysis, below we calibrate the correspond-
ing parameters to historical, rather than implied, market data (see
Section 16.7.2).

For simplicity and expediency, we calculate market observables,
such as swap rates and LIBORs, from the state (X1

t , X2
t ) by applying

the functional forms for the corresponding (affine) two-factor Hull–
White model (without feedback loop and jump terms).

The model given by Equation 16.26 is a minimally complex model
incorporating the following features:

• jumps describing extremal market moves over short time-
periods;

• regime-dependent volatilities and intensities capturing the
naturally increasing codependency with defaults;
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• intracurve spread volatility, producing a reasonable P&L dis-
tribution for delta-neutral steepener/flattener positions.

16.6.4 FX process

The spot FX rate between the ith and jth economies is modelled
analogously to Equation 16.26

dXi,j
t = σ i,j

t Xi,j
t dWi,j,ξm

t + βi,jX
i,j
t− dN

sys,ξm

t +Xi,j
t− dNi,j,ξm

t (16.27)

where σ i,j
t is a deterministic function of time, βi,j is the sensitivity

to the systemic jump process N
sys,ξm

t and Ni,j,ξm

t is an idiosyncratic
jump process independent of all else conditional on ξm.

16.6.5 Non-CCP asset process

The non-clearing related assets of the kth GCM are driven by a
process of the same form, ie

dAk
t = σ k

t Ak
t dWk,ξm

t + βkAk
t− dN

sys,ξm

t +Ak
t− dNk,ξm

t (16.28)

where σ k
t is a deterministic function of time, βk is the sensitivity to

the systemic jump process N
sys,ξm

t and Ni,j,ξm

t is an idiosyncratic jump
process conditionally independent of ξm.

16.6.6 Default events

We use the Merton–Black–Cox structural model to describe the
default of the kth GCM (see, for example, Lipton and Sepp 2009).
More precisely, its default time is the hitting time of the total position
of CCP-related and non-CCP-related activities

τk = inf{t > 0: Ck
t − Ck

0 +Ak
t � Bk

t } (16.29)

where Bk
t is a deterministic barrier, Ak

t is the value of non-CCP-related
assets, such as loans and mortgages, and Ck

t − Ck
0 is the net cashflow

due to CCP-related activities. The barriers are calibrated numerically
to target default probabilities for the GCM in question.

Depending on the business model of a particular member, the
relative significance of the volatilities attributable to CCP-related
activity, Ct, and non-CCP-related activity, At, may vary considerably.
To capture this fact, we categorise members as follows:

• large diversified financial institutions, whose assets’ volatility
is dominated by non-CCP-related activities, At;
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• large markets-driven houses, whose trading books make up a
significant part of their business so the volatility of Ct is similar
to that of At;

• trading houses, for which the volatility of Ct is larger than At.

Assuming that the kth GCM of the jth CCP has defaulted, the
total loss for the jth CCP has to be calculated and distributed across
the remaining GCMs, including XYZ Bank, via the standard water-
fall process. In reality, as mentioned earlier, the waterfall processes
vary considerably between CCPs and depend on the outcome of the
idiosyncratic auctions, which are hard to model accurately. Instead
of burdening ourselves with tasks that cannot be accomplished,
we simply assume the DFs’ losses are mutualised and distributed
between the surviving GCMs in proportion to their IMs. Likewise,
the net positions of the defaulter are redistributed to all surviving
members proportionally to the size of their IM.

For completeness, we need to model the situation described in
Section 16.3.5, where the losses exceed all the CCP’s resources and
it defaults (although this eventuality is unlikely). In this case we
assume that surviving GCMs will provide the VM of cleared trades
up to the default time of the CCP; after that, all cleared trades will be
unwound at par. The resulting losses will be divided proportionally
to the surviving GCM’s closing IMs. As mentioned earlier, there
has never been a major CCP default; thus, the proposed resolution
mechanism may or may not not be completely realistic. Still, it can
be argued that this mechanism is reasonable and parsimonious.

In view of the above, the incremental cashflows can be represented
as follows

Ck
t − Ck

0 = −
∑

j

IMj
k(t)− IMj

k(0)+
∑

j

VMj
k(t)− VMj

k(0)

−
∑

j

∑
ti+1<t

lossIMDF
j
k
(ti, ti+1) (16.30)

where the summation is over all CCPs, IMj
k(t) and VMj

k(t) are the
IM and VM margins, lossIMDF

j
k
(ti, ti+1) is the loss over IM and DF

for CCPj allocated to GCMk over time interval (ti, ti+1]. This loss is
given by

lossIMDF
j
k
(ti, ti+1) =

χτk>tIM
j
k∑

l χτl>tIM
j
k

lossIMDFj(ti, ti+1) (16.31)
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with the total loss over IM and DF for CCPj given by

lossIMDFj(ti, ti+1)

=
∑

l:τl∈(ti ,ti+1]

( ∑
φ∈Φj

l(ti)

(Vφ(ti+1)−Vφ(ti))+ IMj
l(ti)+DFj

l(ti)
)−

(16.32)

with the summation over GCMs that have defaulted (if any) in
the time interval (ti, ti+1]. The length, ti+1 − ti, of the simula-
tion time intervals equals the time horizon corresponding to the
VaR methodology of the CCP under consideration (typically five
business days).

16.7 RESULTS
16.7.1 Model simulation flow

For the reader’s convenience we describe the simulation steps
needed to run the model:

(i) calibrate the GCM weights, initial non-cleared asset levels and
default barriers;

(ii) calibrate market dynamic variables;

(iii) compute the GCM portfolios on each CCP for each cleared
asset class;

(iv) calculate the initial levels of IM, DF and portfolio values;

(v) simulate one period of market/economic data and GCM non-
cleared asset values;

(vi) calculate changes in VM, IM, DF over that period, including
DF reassessments;

(vii) calculate any GCM defaults over that period;

(viii) distribute any losses through the CCP waterfalls;

(ix) redistribute defaulted CCPs’ portfolios to other GCMs;

(x) resolve any CCP defaults;

(xi) repeat until the end of the time horizon or a full cycle with no
defaults, whichever is the later;

(xii) run for desired number of paths;
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(xiii) record statistics for market variables, number and timing of
defaults, stress indicator, loss through DF, liquidity require-
ments, etc;

(xiv) display data either along simulated paths or as distributions
at a given time horizon, T.

The model flow is illustrated in Figure 16.3.

16.7.2 Model calibration
We now use a realistic configuration of the model to calculate
the risks faced by XYZ Bank proxying one of the “big four” US
banks in scale, with suitably anonymised positions. We consider
LCH.SwapClear and the Chicago Mercantile Exchange for US dol-
lar and euro fixed-float swaps and assume that there are 101 clearing
members in total, each belonging to both CCPs.

The complexity of the CCP network itself requires that any real-
istic model aimed at obtaining quantitative rather than qualitative
results be complex, large and hence hard to calibrate. Since the model
described above is both realistic in terms of its dynamics and robust
in terms of the choices made, we feel confident of the legitimacy of
any derived results. There are several parts of the model requiring
calibration, which we perform in the most conservative way possi-
ble. Further details of the techniques used to calibrate the various
submodels are given in Barker et al (2016).

In our framework, the market is driven by regime-switching sets
of jump–diffusion processes. To be specific, we assume there are two
states that are differentiated by a volatility multiplier. This volatility
multiplier is conservatively set to 2, reflecting the fact that the during
the global financial crisis the volatility for rates processes increased
by 1.5 times. The underlying processes are calibrated to the current
2Y and 10Y swap rates and their historic volatility. This is done in
three stages:

1. the dynamics are calibrated analytically without jumps;

2. a fixed-point iteration is used to calibrate the model, excluding
the feedback mechanism described in Section 16.6;

3. the minimal entropy technique is used to calibrate the full
market dynamics to the required targets.

The model requires knowing the initial levels of non-CCP assets
for GCMs. For the largest GCMs, like XYZ Bank, we use the most
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Figure 16.4 Number of GCM defaults as a function of time
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recent published financial statements to fit the initial levels of these
assets. Although the corresponding financial information gives only
a snapshot in time, we feel that trying to use market observable
assets such as credit default swaps would just muddy the waters,
add unnecessary complexity and not give any additional genuine
insights. We assume that all mid-size GCMs are similar, and use the
levels for one of them as a proxy for the rest. This assumption is
justifiable due to the fact that the largest GCMs contribute most to
the stability of the system as a whole, and have to be modelled as
accurately as possible, while smaller GCMs play second fiddle.

In a similar way to the capital asset pricing model, non-CCP assets
of each GCM are driven by a common factor, calibrated to the volatil-
ity of a portfolio of financial institutions, and an idiosyncratic fac-
tor. The GCMs’ cleared portfolios are generated using the method
described in Section 16.4 with the parameter R in Equation 16.13
chosen in such a way that the total IM and DF reported by the vari-
ous CCPs, and hence the DF contributions of any known GCM, are
reproduced as accurately as possible. Since, for known portfolios,
we apply the actual IM calculation methods employed by the vari-
ous CCPs, we are guaranteed to get the correct IMs. We calibrate the
default barriers introduced in Section 16.6.6 to the implied default
probabilities of GCMs of interest.

In Figure 16.4, we show the total number of defaults among 101
GCMs over a one-year time horizon for a particular simulation path.
This scenario is rather extreme and clearly illustrates the strong
adverse impact of the feedback loop on the survival probability
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Figure 16.5 Liquidity ratio as a function of time
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of individual GCMs, caused by the increase in default intensities
proportional to the realised number of defaults.

In Figure 16.5, we plot the ratio of IM to initial IM against time,
with and without a feedback loop. It is clear that feedback effects
have a large adverse effect on the liquidity position of a GCM, in
agreement with the previous observation.

16.7.3 Results for a realistic configuration of the model

For a fixed one-year time horizon, we are interested in two random
variables ηC, ηL representing the credit losses due to defaults (of
other GCMs and CCPs) and potential liquidity drains for XYZ Bank,
respectively. These variables are scaled by the shareholder equity of
XYZ Bank, and hence represent the relative significance of losses
and margin calls to the capital buffer, which is set to US$200 billion,
approximating the size of the shareholder equity of a “big-four” US
bank. We wish to calculate the complementary cumulative distribu-
tion functions (CCDFs) for ηC and ηL and analyse the qualitative
impact of the feedback loop on these distributions.

In order to compute CCDFC and CCDFL properly, we have to take
into account the contingent cashflows between all agents in the CCP
network. We calculate these distributions under different scenarios:

• defaults with the feedback-based regime-switching (labelled
‘feedback’);

• defaults only (labelled “default only”);
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Figure 16.6 Logarithmic plot of CCDFC at a time horizon of one year
for different model configurations
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• no defaults.

To ensure comparability of the results across configurations, we hold
the expected stress indicator, E[Ξ1], fixed as we change the settings
of the feedback mechanism. To this end, we use a minimal entropy
path-reweighting algorithm (see, for example, Avellaneda et al 2001).
CCDFC and CCDFL are plotted with a logarithmic scale on the y-axis
so that, for example, a y-value of 0.01 corresponds to a 99% quantile
of the corresponding distributions.

In Figure 16.6, we plot the simulated distribution CCDFC for the
ratio of the losses due to default (across all of GCMs and CCPs) to
shareholder equity of XYZ Bank. This figure demonstrates two key
points:

1. the effect of feedback correctly captures the natural wrong-way
risk between defaults and market volatility and dramatically
amplifies the tail of the loss distribution due to defaults;

2. even making conservative assumptions about the relationship
between defaults and market volatility and taking into account
the interconnected and complex relationships between the
agents of the CCP network, we cannot generate losses large
enough to threaten the survival of a well-diversified and
well-capitalised financial institution.
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Figure 16.7 Logarithmic plot of CCDFL at a time horizon of one year for
different model configurations
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In Figure 16.7, we plot the simulated distribution CCDFC for the
ratio of the additional aggregate IM to the shareholder equity of XYZ
Bank that it needs to post to the two CCPs in the system. Changes
in IM capture the effect of new extreme events entering the VaR
look-back period and potential increases in portfolio size due to the
absorption of defaulting GCMs’ portfolios by surviving GCMs. This
figure demonstrates the importance of the likely increases in volatil-
ity in stressed market conditions. It also shows, by comparison with
Figure 16.6, that, in dollar terms, liquidity drains due to margin calls
are significantly larger than losses due to default.

16.8 CONCLUSIONS

Regulatory changes since the 2007–10 global financial crisis have
resulted in a significant increase in the volume of centrally cleared
financial instruments. Yet, the risks associated with central clearing
are relatively poorly understood, not least because of the techni-
cal difficulties in building a suitable theoretical framework. Such an
undertaking requires the ability to describe a large and very intri-
cate network of GCMs and CCPs (see Figure 16.1), and to perform
complex calculations related to scenario generation and estimation
of the VM, IM, DF and loss waterfall.
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We used suitable heuristics to simulate the realistic contingent
cashflows between all the agents in the CCP network and to esti-
mate the associated risks. Our model is capable of capturing the sub-
stantial wrong-way risk between the volatility of market variables
and defaults. Our results indicate that the tail losses and increased
liquidity requirements are very real, and, moreover, that liquidity
requirements (margin calls) dominate those related to credit risk.
The oft-mentioned fear that the wider application of central clear-
ing to OTC derivatives has a destabilising impact on the financial
ecosystem as a whole, due to contagion effects transmitted through
the CCP network, is not supported by our numerical experiments.
While this result is at odds with received wisdom, it can be explained
by the fact that losses due to default are a small fraction of the Tier 1
common equity of the diversified financial institutions that domi-
nate the CCP membership. Our recommendation to GCMs assessing
the risks and costs associated with their central clearing activities is
to focus primarily on funding and liquidity requirements, which, if
not provisioned for, can negatively affect business as usual. Still, by
their very nature, any CCP-related losses are likely to be realised pre-
cisely under extreme market dislocations, making their absorption
particularly painful to the GCMs of the CCP network.

This chapter is an extended and updated version of the paper by
Barker et al (2017). The author is grateful to coauthors R. Barker,
A. Dickinson and R. Virmani, as well as to former Bank of America
colleagues E. Baysal and A. Itkin for their contributions in building
the model described in this chapter. The author is also indebted to
his Numeraire Financial colleagues M. Lipton and S. Inglis for sev-
eral very useful discussions of the topics covered above. Conver-
sations with S. Kirdar and P. Xythalis of Wells Fargo are gratefully
acknowledged.
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