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A modern version of monetary circuit theory with a particular emphasis on stochastic
underpinning mechanisms is developed. It is explained how money is created by the
banking system as a whole and by individual banks. The role of central banks as system
stabilizers and liquidity providers is elucidated. It is shown how in the process of money
creation banks become naturally interconnected. A novel extended structural default
model describing the stability of the Interconnected banking network is proposed. The
purpose of bank capital and liquidity is explained. Multi-period constrained optimization

problem for bank balance sheet is formulated and solved in a simple case. Both theoretical
and practical aspects are covered.
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Balkan: Are you a religious man, Corso? I mean, do you believe in the supernatural?
Corso: I believe in my percentage.

The Ninth Gate
A Screenplay by R. Polanski, J. Brownjohn and E. Urbizu

Steven Obanno: Do you believe in God, Mr. Le Chiffre?
Le Chiffre: No. I believe in a reasonable rate of return.

Casino Royale
A Screenplay by N. Purvis, R. Wade, P. Haggis

Coffee Cart Man: Hey buddy. You forgot your change.
Joe Moore: [Takes the change] Makes the world go round.
Bobby Blane: What’s that?
Joe Moore: Gold.
Bobby Blane: Some people say love.
Joe Moore: Well, they’re right, too. It is love. Love of gold.

Heist
A Screenplay by D. Mamet
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1. Introduction

Since times immemorial, the meaning of money has preoccupied industrialists,
traders, statesmen, economists, mathematicians, philosophers, artists, and laymen
alike.

The great British economist John Maynard Keynes puts it succinctly as follows:

For the importance of money essentially flows from it being a link
between the present and the future.

These words are echoed by Mickey Bergman, the character played by Danny
DeVito in the movie Heist, who says:

Everybody needs money. That’s why they call it money.

Money has been subject of innumerable expositions; see, e.g. Law (1705), Jevons
(1875), Knapp (1905), Schlesinger (1914), von Mises (1924), Friedman (1969),
Schumpeter (1970), Friedman & Schwartz (1982), Kocherlakota (1998), Realfonzo
(1998), Mehrling (2000), Davidson (2002), Ingham (2004), Graeber (2011), McLeay
et al. (2014), among many others. Recently, these discussions have been invigo-
rated by the introduction of Bitcoin (Nakamoto 2009). An astute reader will rec-
ognize, however, that apart from intriguing technical innovations, Bitcoin does
not differ that much from the fabled tally sticks, which were used in the Mid-
dle Ages; see, e.g. Baxter (1989). It is universally accepted that money has several
important functions, such as a store of value, a means of payment, and a unit
of account.a

However, it is extraordinarily difficult to understand the role played by money
and to follow its flow in the economy. One needs to account properly for nonfinancial
and financial stocks (various cumulative amounts), and flows (changes in these
amounts). Here is how Michal Kalecki, the great Polish economist, summarizes
the issue with his usual flair and penchant for hyperbole:

Economics is the science of confusing stocks with flows.

In our opinion, the functioning of the economy and the role of money is best
described by the monetary circuit theory (MCT), which provides the framework
for specifying how money lubricates and facilitates production and consumption
cycles in society. Although the theory itself is quite established, it fails to include
some salient features of the real economy, which came to the fore during the latest
financial crisis. The aim of the current paper is to develop a modern continuous-
time version of this venerable theory, which is capable of dealing with the equality
between production and consumption plus investment, the stochastic nature of con-
sumption, which drives other economic variables, defaults of the borrowers, the finite
capacity of the banking system for lending, and other important real-world features

aWe emphasize that a particularly important function of money as a means of payment of taxes.
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of the economy. This paper provides a novel description of the behavior and sta-
bility of the interlinked banking system, as well as of the role played by individual
banks in facilitating the functioning of the real economy. The latter aspect is par-
ticularly important because currently there is a certain lack of appreciation on the
part of the conventional economic paradigm of the special role of banks. For exam-
ple, banks are excluded from widely used dynamic stochastic general equilibrium
models, which are presently influential in contemporary macroeconomics (Sbordone
et al. 2010).

Some of the key insights on the operation of the economy can be found in Smith
(1977), Marx (1867), Schumpeter (1912), Keynes (1936), Kalecki (2007), Sraffa
(1960), Minsky (1975, 1986), Stiglitz (1997), Tobin & Golub (1998), Piketty (2014)
and Dalio (2015). The reader should be cognizant of the fact that opinions of the
cited authors very often contradict each other, so that the “correct” viewpoint on
the actual functioning of the economy is not readily discernible.

Monetary circuit theory, which can be viewed as a specialized branch of the gen-
eral economic theory, has a long history. Some of the key historical references are
Petty (1662), Cantillon (2010), Quesnay (1759) and Jevons (1875). More recently,
this theory has been systematically developed by Keen (1995, 2001, 2013, 2014)
and others. The theory is known under several names such as stock-flow consistent
(SFC) model, social accounting matrix (SAM) model. Post-Keynsian SFC macroe-
conomic growth models are discussed in numerous references. Here is a representa-
tive selection: Backus et al. (1980), Tobin (1982), Moore (1988, 2006), De Carvalho
(1992), Godley (1999), Bellofiore et al. (2000), Parguez & Secareccia (2000), Lavoie
(2001, 2004), Lavoie & Godley (2001, 2002), Gnos (2003), Graziani (2003), Secarec-
cia (2003), Dos Santos & Zezza (2004, 2006), Zezza & Dos Santos (2004), Godley
& Lavoie (2007), Van Treek (2007), Le Heron & Mouakil (2008), Le Heron (2009)
and Dallery & van Treeck (2011). A useful survey of some recent results is given by
Caverzasi & Godin (2013).

It is a simple statement of fact that reasonable people can disagree about the
way money is created. Currently, there are three prevailing theories describing the
process of money creation. The credit creation theory of banking was dominant in
the 19th and early 20th centuries. It is discussed in a number of books and papers,
such as Macleod (1905), Mitchell-Innes (1914), Hahn (1920), Wicksell (1922), Soddy
(1934) and Werner (2005). More recently, Werner (2014) has empirically illustrated
how a bank can individually create money “out of nothing”.b In our opinion, this
theory correctly reflects the mechanics of linking credit and money creation; unfor-
tunately, it gradually lost its ground and was overtaken by the fractional reserve
theory of banking; see for example, Marshall (1887), Keynes (1930), Samuelson &
Nordhaus (1995), Crick (1927) and numerous other sources. Finally, the financial

bHowever, his experiment was not complete because he received a loan from the same bank
he has deposited the money to. As discussed later, this is a very limited example of monetary
creation.
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intermediation theory of banking is the current champion, three representative
descriptions of this theory are given by Keynes (1936), Tobin (1963, 1969), and
Bernanke & Blinder (1989), among many others. In our opinion, this theory puts
insufficient emphasis on the unique and special role of the banking sector in the
process of money creation.

In the present, paper we analyze the process of money creation and its intrinsic
connection to credit in the modern economy. In particular, we address the fol-
lowing important questions: (a) Why do we need banks and what is their role
in society? (b) Can a financial system operate without banks? (c) How do banks
become interconnected as a part of their regular lending activities? (d) What makes
banks different from nonfinancial institutions? In addition, we consider a number of
issues pertinent to individual banks, such as (e) How much capital do banks need?
(f) How liquidity and capital are related? (g) How to optimize a bank balance
sheet? (h) How would an ideal bank look like? (i) What are the similarities and
differences between insurance companies and banks viewed as dividend-producing
machines? In order to answer these crucial questions, we develop a new modern
monetary circuit (MMC) theory, which treats the banking system on three lev-
els: (a) the system as a whole; (b) an interconnected set of individual banks;
(c) individual banks. We try to be as parsimonious as possible without sacri-
ficing an accurate description of the modern economy with a particular empha-
sis on credit channels of money creation in the supply-demand context and their
stochastic nature.

The paper is organized as follows. Initially, in Secs. 2 and 3, we develop the build-
ing blocks, which are further aggregated in Sec. 4 into the consistent continuous-time
MMC theory. In Sec. 2, we introduce stochasticity into the conventional Lotka–
Volterra–Goodwin equations and incorporate natural restrictions on the relevant
economic variables. Further, in Sec. 3, we analyze the conventional Keen equations
and modify them by incorporating stochastic effects and natural boundaries. Build-
ing upon the results of Secs. 2 and 3, we develop in Sec. 4 a consistent MMC theory
and illustrate it for a simple economic triangle that includes consumers (workers and
rentiers), producers and banks. Section 5 details the underlying process of money
creation and annihilation by the banking system and discusses the role of the cen-
tral bank as the liquidity provider for individual banks. In Sec. 6, we develop the
framework to study the banking system, which becomes interlinked in the process
of money creation and propose an extended structural default model for the inter-
connected banking network. We emphasize that the asset–liability dynamics used
in Sec. 6 is somewhat different from the one used in Sec. 4 because we allow banks
to invest in stocks and bonds issued by firms, which are subject to both credit and
market risk. This model is further explained in Appendix A for the simple case of
two interlinked banks with mutual obligations. In Sec. 7, the behavior of individual
banks operating as a part of the whole banking system is analyzed with an emphasis
on the role of bank capital and liquidity. The balance sheet optimization problem
for an individual bank is formulated and solved in a simplified case.
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2. Stochastic Modified Lotka–Volterra–Goodwin Equations

2.1. Background

The Lotka–Volterra system of first-order nonlinear differential equations quali-
tatively describes the predator–prey dynamics observed in biology (Lotka 1925,
Volterra 1931). Goodwin (1967) was the first to apply these equations to the theory
of economic growth and business cycles. His equations, which establish the relation-
ship between the worker’s share of national income and employment rate became
deservedly popular because of their simple and parsimonious nature and ability
to provide a qualitative description of the business cycle. However, they do have
several serious drawbacks, including their nonstochasticity, prescriptive nature of
firms’ investment decisions, and frequent violations of natural restrictions on the
corresponding economic variables. Although, multiple extensions of the Goodwin
theory have been developed over time (see, e.g. Solow 1990, Franke et al. 2006,
Barbosa-Filho & Taylor 2006, Veneziani & Mohun 2006, Desai et al. 2006, Harvie
et al. 2007, Kodera & Vosvrda 2007, Taylor 2012, Huu & Costa-Lima 2014, among
others), none of them is able to holistically account for all the deficiencies outlined
above. In this section, we propose a novel mathematically consistent version of the
Goodwin equations, which we subsequently use as a building block for the MMC
theory described in Sec. 4.

2.2. Framework

Assume, for simplicity, that in the stylized economy a single good is produced. Then,
the productivity of labor θw is measured in production units per worker per unit
of time, the available workforce Nw is measured in the number of workers, while
the employment rate λw is measured in fractions of one. Thus, the total number of
units produced by firms per unit of time, Υf , is given by

Υf = θwλwNw, (2.1)

where both productivity and labor pool grow deterministically as
dθw
θw

= αdt, (2.2)

dNw
Nw

= βdt. (2.3)

If so desired, these relations can be made much more complicated. For example, we
can add stochasticity, more realistic population dynamics, and so on. Production
expressed in monetary terms is given by

Yf = θwλwNwP, (2.4)

where P is the price of one unit of goods. Similarly to Eqs. (2.2) and (2.3), we
assume that the price is deterministic, such that

dP

P
= γdt. (2.5)
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The production shares of workers and firms are denoted respectively by sw, sf =
1 − sw. The unemployment rate λu is defined in the usual way, λu = 1 − λw.
Goodwin’s idea was to describe joint dynamics of the pair (sw, λw).

2.3. Existing theory

The nonstochastic Lotka–Volterra–Goodwin equations (LVGEs) describe the rela-
tion between the worker portion of the output and the relative employment rate
(Lotka 1925, Volterra 1931, Goodwin 1967).

The log-change of sw is govern by the Phillips law and can be written in the
form

dsw
sw

= (−a+ bλw)dt ≡ φ(λ)dt, (2.6)

where φ(λ) it the so-called Phillips curve (Phillips 1958, Flaschel 2010, Blanchflower
& Oswald 1994).

The log-change of λw is calculated in three easy steps. First, the so-called
Cassel–Harrod–Domar (Cassel 1967, Harrod 1939, Domar 1946) law is used to show
that

Yf = νfKf , (2.7)

where Kf is the monetary value of the firm’s nonfinancial assets and νf is the
constant production rate, which is the inverse of the capital-to-output ratio �f ,
νf = 1/�f .c It is clear that νf , which can be thought of as a rate, is measured
in units of inverse time, [1/T ], while �f is measured in units of time, [T ]. Second,
Say’s law (Say 1803), which states that all the firms’ profits, given by

Πf = sfYf = sfνfKf , (2.8)

are reinvested into business, so that the dynamics of Kf is governed by the deter-
ministic equation

dKf

Kf
=
dYf
Yf

= (sfνf − ξA)dt (2.9)

with ξA being the amortization rate. Finally, the relative change in employment
rate, λw is derived by combining Eqs. (2.2)–(2.5) and (2.9):

dλw
λw

=
dYf
Yf

− dθw
θw

− dNw
Nw

− dP

P
= (sfνf − α− β − γ − ξA)dt. (2.10)

Symbolically,

dλw
λw

= (c− dsw)dt. (2.11)

cIn essence, we apply the celebrated Hooke’s law (ut tensio, sic vis) in the economic context.
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Thus, the coupled system of equations for (sw, λw) has the form

dsw
sw

= −(a− bλw)dt,

dλw
λw

= (c− dsw)dt. (2.12)

Equations (2.12) schematically describe the class struggle; they are formally
identical to the famous predator–prey Lotka–Volterra equations in biology, with
intensive variables sw, λw playing the role of predator and prey, respectively. Two
essential drawbacks of the LGVE are that they neglect the stochastic nature of
economic processes and do not preserve natural constraints (sw, λw) ∈ (0, 1)×(0, 1).
Besides, they are too restrictive in describing the discretionary nature of firms’
investment decisions. The conservation law Ψ for Eq. (2.12) has the following form

Ψ(sw, λw) = −ln(scwλ
a
w) + dsw + bλw, (2.13)

and has a fixed point at ( c
d
,

a

b

)
, (2.14)

where Ψ achieves its minimum. Solutions of the LVGEs without regularization are
shown in Fig. 1. Both phase diagrams in the (sw, λw)-space and time evolution
graphs show that for the chosen set of parameters λw > 1 for some parts of the
cycle.

2.4. Modified theory

In order to satisfy natural boundaries in the stochastic framework, we propose a
new version of the LVGEs of the form

dsw = −
(
a− bλw − ω

λu

)
swdt+ σs

√
swsfdWs(t),

dλw =
(
c− dsw − ω

sf

)
λwdt+ σλ

√
λwλudWλ(t), (2.15)

where ω > 0 is a regularization parameter, and σs
√
swsf , σλ

√
λwλu are Jacobi nor-

mal volatilities. The first Eq. (2.15) uses the modified Phillips curve and shows that
changes in the wage rate become infinitely large when the economy approaches full
employment. The second Eq. (2.15) shows that firms start to reduce their workforce
rapidly when their share of production approaches zero. Our choice of volatilities
ensures that (sw, λw) stays within the unit square. This choice is standard in similar
situations arising, for example, in mathematical biology.

The deterministic conservation law Ψ for Eq. (2.15) is similar to Eq. (2.13):

Ψ(sw, λw) = − ln(sc−ωw sωf λ
a−ω
w λωu ) + dsw + bλw. (2.16)

However, it is easy to see that the corresponding contour lines stay within the unit
square, (sw, λw) ∈ (0, 1) × (0, 1). The fixed point, where Ψ achieves its minimum,
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Fig. 1. Typical solutions of LVGEs without regularization. Natural constraints are violated. Rep-
resentative parameters are a = 0.225, b = 0.20, c = 0.4, d = 0.6. Initial conditions for (a)–(f) are
(sw = 0.75, λw = 0.8), (sw = 0.75, λw = 0.9), and (sw = 0.75, λw = 0.95), respectively.

is given by(
1
2d

(c+ d−
√

(c− d)2 + 4dω),
1
2b

(a+ b−
√

(a− b)2 + 4bω)
)
. (2.17)

Effects of regularization and effects of stochasticity combined with regularization
are shown in Figs. 2 and 3, respectively. It is clear that, by construction, Eq. (2.15)
reflect naturally occurring stochasticity of the corresponding economic processes,
while preserving natural bounds for sw and λw.

The idea of regularizing the Goodwin equations was originally proposed by Desai
et al. (2006). Our choice of the regularization function is different from theirs but
is particularly convenient for further development and advantageous because of

1650034-8

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

June 29, 2016 14:31 WSPC/S0219-0249 104-IJTAF SPI-J071
1650034

Modern Monetary Circuit Theory

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.7

0.75

0.8

0.85

0.9

0.95

1

s
w

l w

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

t

s w
,l w

(a) (b)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.75

0.8

0.85

0.9

0.95

1

s
w

l w

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

t

s w
,l w

(c) (d)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.7

0.75

0.8

0.85

0.9

0.95

1

s
w

l w

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

t

s w
,l w

(e) (f)

Fig. 2. Typical solutions of LVGEs with regularization. Natural constraints are satisfied. The same
parameters and initial conditions as in Fig. 1 are used; in addition, ω = 0.005.

its parsimony. At the same time, while stochastic LVGEs are rather popular in the
biological context (see, e.g. Cai & Lin 2004), stochastic aspects of the LVGEs remain
relatively unexplored (see, however, Kodera & Vosvrda 2007, and, more recently,
Huu & Costa-Lima 2014).

3. Stochastic Modified Keen Equations

3.1. Background

LVGEs and their simple modifications generate phase portraits, which are either
closed or almost closed, as presented in Figs. 1–3. Accordingly, they cannot describe
unstable economic behavior. However, historical experience suggests that capitalist
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Fig. 3. Typical solutions of LVGEs with regularization and stochasticity. Natural constraints are
satisfied; orbits are nonperiodic. The same parameters and initial conditions as in Fig. 2 are used;
in addition, σs = 0.015, σl = 0.005.

economies are periodically prone to crises, as is elucidated by the famous financial
instability hypothesis of Minsky (Minsky 1977, 1986). His theory bridges macroe-
conomics and finance and, if not fully developed, then, at least clarifies the role
of banks and, more generally, debt in modern society. Although Minsky’s own
attempts to formulate the theory in a quantitative rather than qualitative form
were unsuccessful, it was partially accomplished by Keen (1995). Keen extended
the Goodwin model by abandoning its key assumption that investment is equal to
profit. Instead, he assumed that, when profit rate is high, firms invest more than
their retained earnings by borrowing from banks and vice versa.

Below, we briefly discuss the Keen equations (KEs) and show how to modify
them in order to remove some of their intrinsic deficiencies.
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3.2. Keen equations

The Keen equations (Keen 1995), describe the relation between the workers portion
of the output sw, the employment rate λw, and the leverage ratio Γf = Λf/Kf ,

where Λf are loans of firms, and Kf are their physical (nonfinancial) assets.d It is
clear that sw, λw,Γf are nondimensional quantities. KEs can be used to provide a
quantitative description of Minsky’s financial instability hypothesis (Minsky 1977).

Keen expanded the Goodwin framework by abandoning one of its key simplifi-
cations, namely, the assumption that investment equals profit. Instead, he allowed
investments to be financed by banks. This important extension enables the descrip-
tion of ever increasing firms leverage until the point when their debt servicing
becomes infeasible and an economic crisis occurs. Subsequently, Keen (2013, 2014)
augmented his original equations in order to account for flows of funds among firms,
banks, and households. However, KEs and their extensions do not take into account
the possibility of default by borrowers, and do not reflect the fact that the banking
system’s lending ability is restricted by its capital capacity. Even more importantly,
extended KEs do not explicitly guarantee that production equals consumption
plus investment. In addition, as with LVGEs, KEs do not reflect stochasticity of
the underlying economic behavior and violate natural boundaries. Accordingly, a
detailed description of the crisis in the Keen framework is not possible.

Symbolically, KEs can be written as

dsw = −(a− bλw)swdt,

dλw =
(
νff

(
sf − rΛΓf

νf

)
− c

)
λwdt,

dΓf =
((
rΛ − νff

(
sf − rΛΓf

νf

)
+ d

)
Γf + νf

(
f

(
sf − rΛΓf

νf

)
− sf

))
dt, (3.1)

where rΛ is the loan rate, a, b, c, d are suitable parameters, and f(·) is an increasing
function of its argument which represents net profits. Keen and subsequent authors
recommend the following choice

f(x) = p+ exp(qx+ r). (3.2)

Solutions of KEs without regularization are shown in Fig. 4.
On the one hand, these figures exhibit the desired features of the rapid growth

of firms’ leverage. On the other hand, they produce an unrealistic employment rate
λw > 1.

3.3. Modified theory

A simple modification along the lines outlined earlier, makes KEs more credible:

dsw = −
(
a− bλw − ω

λu

)
swdt+ σs

√
swsfdWs(t),

dWe deviate from the original Keen’s definitions somewhat for the sake of uniformity.
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Fig. 4. Typical solutions of KEs without regularization. Natural constraints are violated. Rep-
resentative parameters are a = 0.225, b = 0.20, c = 0.075, d = 0.03, rΛ = 0.03, νf = 0.1, p =
−0.0065, q = 20.0, r = −5.0. Initial conditions for (a)–(f) are (sw = 0.75, λw = 0.8, Γf = 0.1),
(sw = 0.75, λw = 0.9, Γf = 0.2), and (sw = 0.75, λw = 0.95, Γf = 0.3), respectively.

dλw =
(
f

(
sf − rΛΓf

νf

)
− c− ω

sf

)
λwdt+ σλ

√
λwλudWλ(t),

dΓf =
((
rΛ − νff

(
sf − rΛΓf

νf

)
+ d

)
Γf + νf

(
f

(
sf − rΛΓf

νf

)
− sf

))
dt

+ σΓΓfdWΓ(t). (3.3)

Here, ω is a regularization parameter, σs
√
swsf , σλ

√
λwλu are Jacobi normal volatil-

ities, and σΓ is the lognormal volatility of the leverage ratio.
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Fig. 5. Typical solutions of KEs with regularization. Natural constraints are satisfied. The same
parameters and initial conditions as in Fig. 4 are used; in addition, ω = 0.005.

Effects of regularization and effects of stochasticity combined with regularization
for KEs are presented in Figs. 5 and 6, respectively.e

While these figures demonstrate the same rapid growth of firms’ leverage as in
Fig. 4, while ensuring that λw < 1, without taking into account a possibility of
defaults, they are not detailed enough to describe the approach of a crisis and the
moment of the crisis itself.

Here and above, we looked at the classical LVGEs and KEs and modified them
to better reflect the underlying economics. We use these equations as an important
building block for the stochastic MMC theory.

ePartially regularized case without stochasticity is also considered by Grasselli & Costa-Lima
(2012).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Typical solutions of KEs with regularization and stochasticity. Natural constraints are
satisfied; orbits are nonperiodic. The same parameters and initial conditions as in Fig. 5 are used;
in addition, σs = 0.005, σl = 0.005, σΓ = 0.

4. A Simple Economy: Consumers, Producers, Banks

4.1. Inspiration

Inspired by the above developments, we build a continuous-time stochastic model
of the monetary circuit, which has attractive features of the established models,
but at the same time explicitly respects the fact that production equals consump-
tion plus investment, incorporate a possibility of default by borrowers, satisfies all
the relevant economic constraints, and can be easily extended to integrate the gov-
ernment and central bank, as well as other important aspects, in its framework.
For the first time, defaults by borrowers are explicitly incorporated into the model
framework.
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G

CBPB

FH

NFA NFA

B1 B2

B3B4

Fig. 7. Sketch of the monetary circuit. G — government, CB — central bank, PB — private banks,
F — firms, H — households including rentiers and workers, NFA — nonfinancial assets.

For the sake of brevity, we shall focus on a reduced monetary circuit consisting
of firms, banks, workers, and rentiers, while the extended version will be reported
elsewhere.

4.2. Stocks and flows

To describe the monetary circuit in detail, we need to consider five sectors: house-
holds (workers and rentiers) H ; firms (capitalists) F ; private banks (bankers) PB;
government G; and central bank CB; all these sectors are presented in Fig. 7. How-
ever, the simplest viable economic graph with just three sectors, namely, house-
holds H , firms F , and private banks PB, can produce a nontrivial monetary circuit,
which is analyzed below. Banks naturally play a central role in the monetary cir-
cuit by simultaneously creating assets and liabilities. However, this crucial function
is performed under constraints on banks capital and liquidity. The emphasis on
capital and liquidity in the general context of monetary circuits is an important
and novel feature, which differentiates our approach from the existing ones. Further
details, including the role of the central bank as a system regulator, will be reported
elsewhere.

4.2.1. Notation

We use subscripts w, r, f, b to denote quantities related to workers, rentiers, firms,
and banks, respectively. We denote deposits of rentiers and firms (liabilities of banks
L) by ∆r,∆f , and their loans (assets of banks A) by Λr,Λf . The value of physical
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(nonfinancial) assets of firms are denoted by Kf ; capital of banks by Kb; all these
quantities are expressed in monetary units, [M ]. Thus, financial and nonfinancial
stocks are denoted by ∆r,Λr,∆f ,Λf ,Kf ,Kb. By its very nature, capital of banks,
Kb is a balancing variable between their assets (Λr + Λf ) and liabilities (∆r +∆f ),

Kb = Λr + Λf − (∆r + ∆f ). (4.1)

According to banking regulations, assets of banks are limited by the capital con-
straints,

Kb > νb(Λr + Λf ), (4.2)

where νb is a nondimensional capital adequacy ratio, which defines the overall lever-
age in the financial system. When dealing with the banking system as a whole,
which, in essence can be viewed as a gigantic single bank, we do not need to include
the central bank. Indeed, the main role of the central bank in its capacity of the
lender of last resort is to provide liquidity to the banking system; however, when
there is only one bank in the system, the liquidity squeeze cannot occur by defini-
tion, since any withdrawn money has to be deposited back in the same bank. It goes
without saying that when we deal with a set of individual banks, the introduction
of the central bank is an absolute necessity. This extended case will be presented
elsewhere.

There are several important rates, which determine monetary flows in our sim-
plified economy, namely, the deposit rate r∆, loan rate rΛ,f maximum production
rate at full employment, νf , physical assets amortization rate ξA, default rate ξd;
all these rates are expressed in terms of inverse time units, [1/T ].

Contractual net interest cash flows for rentiers and firms, nir,f , which are mea-
sured in terms of monetary units per time [M/T ], have the form

nir,f = r∆∆r,f − rΛΛr,f . (4.3)

Profits for firms and banks are denoted as Πf and Πb, respectively, with both
quantities being expressed in monetary units per time, [M/T ]. For future discus-
sion, in addition to the overall profits, we introduce distributed, Πdf and Πd

b , and
undistributed, Πuf and Πu

b , portions of the profits.
It is also necessary to introduce various fractions, some of which we are already

familiar with, such as the workers’ share of production sw, the firms’ share of pro-
duction sf = 1 − sw, employment rate λw , unemployment rate λu = 1 − λw, and
some of which are new, such as capacity utilization uf , the rentiers’ share of firms’
profits δrf , the firms’ share of the firms’s profits δff = 1 − δrf , the rentiers’ share
of banks’ profits δrb, the banks’ share of the banks’ profits δbb = 1 − δrb; all these
quantities are nondimensional, [1], and sandwiched between 0 and 1. It is clear that
Πd
f = δrfΠf , and so on.

fWe assume that rD is the same for rentiers and firms, and simplarly with rL.
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4.2.2. Key observations

(a) Production is equal to consumption plus investment:

Yf = Cw + Cr + If . (4.4)

All quantities in Eq. (4.4) are expressed in terms of [M/T ].
(b) On the one hand, the workers’ participation in the system is essentially

nonfinancial and amounts to straightforward exchange of labor for goods, so that

Cw = swYf . (4.5)

Thus, as was pointed out by Kalecki, workers consume what they earn (Kalecki
1971).

(c) On the other hand, rentiers can discretionally choose their level of con-
sumption, Cr, introducing therefore the notion of stochasticity into the picture. We
explicitly model the stochastic nature of their consumption by assuming that it is
governed by the SDE of the form

dCr = κ(C̄r − Cr)dt+ σCrdWC(t)

C̄r = α0(nir + Πd
f + Πd

b ) + α1νfKf , (4.6)

where we use the fact that total stock Σr of financial and nonfinancial assets belong-
ing to rentiers (as a class) is given by

Σr = ∆r − Λr +Kf + ∆f − Λf +Kb

= ∆r − Λr +Kf + ∆f − Λf + Λr + Λf − ∆r − ∆f

= Kf . (4.7)

In other words, the rentiers’ property boils down to firms’ nonfinancial assets. Equa-
tions (4.6) assume that rentiers’ consumption is reverting to the mean, C̄r, which is
a linear combination of profits received by rentiers, nir+Πd

f+Πd
b , and the theoretical

productivity of their capital, νfKf .
(d) We apply the celebrated Hooke’s law and assume that firms invest in pro-

portion to their overall production

If = γfYf . (4.8)

We view this law as a first-order linearization of any hyperelastic relation, which
exists in practice. Thus, firms’ production depends on rentiers’ consumption

Yf =
Cr

sf − γf
. (4.9)

Here, we assume that firms reinvest in production out of the share of their profits,
so that 0 < γf < sf , keeping Cr positive, Cr > 0. It is convenient to represent γf
in the form

γf = υfsf , (4.10)
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0 < υf < 1, and represent Yf in the form

Yf =
Cr

(1 − υf )sf
. (4.11)

(e) Thus, the level of investment and capacity utilization are given by

If =
υfCr

(1 − υf )
, (4.12)

uf =
Yf
νfKf

=
Cr

(sf − γf )νfKf
=

Cr
(1 − υf )sfνfKf

. (4.13)

(f) Firms’ overall profits, distributed, and undistributed, are defined as

Πf = sfYf + r∆∆f − rΛΛf =
Cr

(1 − υf )
+ nif ,

Πd
f = δrfΠf , Πu

f = δff Πf .

(4.14)

Thus, firms’ profits are directly proportional to rentiers consumption. As usual,
Kalecki put it best by observing that capitalists earn what they spend (Kalecki
1971)!

The dimensionless profit rate πf is

πf =
Πf

Kf
. (4.15)

The proportionality coefficient υf introduced in Eq. (4.10) depends on the profit
rate, capacity utilization, financial leverage, so that

υf = Φ
(
υ0 + υ1

sfYf
νfKf

+ υ2
∆f

Kf
+ υ3

Λf
Kf

)
, (4.16)

or, explicitly,

υf = Φ
(
υ0 + υ1

Cr
(1 − υf ) νfKf

+ υ2
∆f

Kf
+ υ3

Λf
Kf

)
, (4.17)

where Φ(·) maps the real axis onto the unit interval, constants υ0, υ1, υ2 are positive,
and constant υ3 is negative. We choose Φ in the form

Φ(x) =
1

1 + exp(−2x)
. (4.18)

(g) Banks’ overall profits, distributed, and undistributed, represent the difference
between interest received on outstanding loans and paid on banks deposits reduced
by defaults on loans, so that

Πb = −ξd(Λr + Λf ) − nir − nif , Πd
b = δrbΠb, Πu

b = δbbΠb. (4.19)

(h) Rentiers’ cash flows are

CFr = r∆∆r − rΛΛr + Πd
f + Πd

b − Cr = nir + Πd
f + Πd

b − Cr. (4.20)
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If CFr > 0, then rentiers’ deposits, ∆r, increase, otherwise, their loans, Λr, increase.
Thus,

d∆r = (nir + Πd
f + Πd

b − Cr)+dt = (CFr)+dt, (4.21)

dΛr = −ξdΛrdt+ (−nir − Πd
f − Πd

b + Cr)+dt

= −ξdΛrdt+ (−CFr)+dt. (4.22)

This equation takes into account a possibility of rentiers’ default.
(i) Firms’ cash flows are

CFf = Πu
f − γfYf . (4.23)

If CFf > 0, then firms’ deposits, ∆f , increase, otherwise, their loans, Λf , increase.
Thus,

d∆f = (Πu
f − γfYf )+dt = (CFf )+dt, (4.24)

dΛf = −ξdΛfdt+ (−Πu
f + γfYf )−dt

= −ξdΛfdt+ (−CFf )+dt. (4.25)

The latter equation takes into account a possibility of firms’ default.
(j) Firms’ physical assets growth depends on their investments and the rate of

depreciation,

dKf =
(
υfCr
1 − υf

− ξAKf

)
dt. (4.26)

(k) Banks’ capital growth is determined by their net interest income and the
rate of default,

dKb = Πu
b dt = δbb(−ξd(Λr + Λf ) − nir − nif ). (4.27)

(l) Physical and financial capacity constraints (at full employment) have the
form

Yf = min(Yf , νfKf ), (4.28)

(−CFr)+ = (−CFr)+Iνb(Λr+Λf )−Kb<0, (4.29)

(−CFf )+ = (−CFf )+Iνb(Λr+Λf )−Kb<0. (4.30)

We emphasize this direct parallel between financial and nonfinancial worlds, with
the capital ratio playing the role of a physical capacity constraint. If the capacity
constraints are reached, then the behavior of the economy would adapt as appropri-
ate. For example, if the maximum physical capacity is reached in (4.28), then actual
production Yf will be smaller than the production given in (4.9), so that consump-
tion of rentiers will be reduced. Such situations rarely occur in a well-functioning
capitalist economy, but if they do, several mechanisms including quantity rationing
can be envisaged for reducing consumption of rentiers. If the financial capacity of
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banks is reached in Eqs. (4.29) and (4.30), then the rentiers and firms will not be
able to borrow enough to make their cash flows satisfy Eqs. (4.22) and (4.25). In
this case, both consumption and investment will become smaller than their desired
levels. The mechanism for this is a sharp increase in the rates rΛ, which the banks
charge for their loans.

(m) We use the above observations to derive a modified version of the LVGEs
(2.15). While the first equation describing the dynamics for sw remains unchanged,
the second equation for λw becomes

dλw =
(

If
νfKf

− α− β − ξA

)
λwdt

=
(

υf
(1 − υf )

Cr
νfKf

− α− β − ξA

)
λwdt, (4.31)

or, symbolically,

dλw =
(

υf
(1 − υf )

Cr
νfKf

− c

)
λwdt. (4.32)

(n) By using Eqs. (2.4) and (4.11), we can express the level of prices, P , as a
function of rentiers’ consumption, Cr, employment, λw, and other important eco-
nomic variables. These equations show that

Cr
(1 − υf )sf

= λwθwNwP. (4.33)

Accordingly, we can represent P as

P =
Cr

(1 − υf )sfλwθwNw
. (4.34)

4.3. Main equations

In this section, we summarize the main dynamic MMC equations and the corre-
sponding constraints. The dynamical equations are

dCr = κC(C̄r − Cr)dt+ σCCrdWC(t),

d∆r =
(
δbbnir + (δrf − δrb)nif − δrbξd(Λr + Λf ) − (δff − υf )Cr

(1 − υf)

)+

dt,

dΛr =
(
−ξdΛr +

(
− δbbnir − (δrf − δrb)nif

+ δrbξd(Λr + Λf ) +
(δff − υf )Cr

(1 − υf )

)+
)
dt,

d∆f =
(
δff nif +

(δff − υf )Cr
(1 − υf )

)+

dt,
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dΛf =

(
−ξdΛf +

(
−δff nif − (δff − υf )Cr

(1 − υf )

)+
)
dt,

dKf =
(

υfCr
(1 − υf )

− ξAKf

)
dt+ σKKfdWK(t),

dKb = −δbb (ξd (Λr + Λf ) + nir + nif ), (4.35)

where

nir,f = r∆∆r,f − rΛΛr,f ,

C̄r = α0

(
δbbnir + (δrf − δrb)nif +

δrfCr
(1 − υf)

)
+ α1νfKf ,

υf = Φ
(
υ0 + υ1

Cr
(1 − υf) νfKf

+ υ2
∆f

Kf
+ υ3

Λf
Kf

)
.

(4.36)

The coefficient υf introduced in Eq. (4.10) can be found either via the Newton–
Raphson method or via fixed-point iteration. The first iteration is generally suffi-
cient, so that, approximately,

υf ≈ Φ
(
υ0 + υ1

Cr
(1 − Φ (υ0)) νfKf

+ υ2
∆f

Kf
+ υ3

Λf
Kf

)
. (4.37)

The physical and financial capacity constraints are

Yf = min(Yf , νfKf ),

(−CFr)+ = (−CFr)+Iνb(Λr+Λf )−Kb<0,

(−CFf )+ = (−CFf )+Iνb(Λr+Λf )−Kb<0.

(4.38)

In addition,

dθw = αθwdt,

dNw = βNwdt,

dsw = −
(
a− bλw − ω

λu

)
swdt+ σs

√
swsfdWs(t),

dλw =
(

υfCr
(1 − υf )νfKf

− c− ω

sf

)
λwdt+ σλ

√
λwλudWλ(t),

P =
Cr

(1 − υf )sfλwθwNw
.

(4.39)

In summary, we propose the closed system of stochastic scale invariant MMC
equations (4.35), (4.36). By construction, these equation preserve the equality
among production and consumption plus investment. In addition, it turns out mod-
ified LVGEs play only an auxiliary role and are not necessary for understanding the
monetary circuit at the most basic level. This intriguing property is due to the
assumption that investments as driven solely by profits. If capacity utilization is
incorporated into the picture, then MMC equations and LVGEs become interlinked.
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Fig. 8. Evolution of various quantities of interest in the nonstochastic circuit. Representative
parameters and initial conditions are as follows: κC = 0.5, δbb = 0.5, δrb = 0.5, δf f = 0.25,
δrf = 0.75, ξDEF = 0.025, ξA = 0.02, r∆ = 0.02, rΛ = 0.04, ν = 0.13, α0 = 0.5, α1 = 0.5,
υ0 = −1.6, υ1 = 1.1, υ2 = 0.1, υ0 = −0.2, a = 0.05, b = 0.05, c = 0.075, ω = 0.005, Cr = 3,
∆r = 30, Λr = 20, ∆f = 20, Λf = 50, Kf = 40, Kb = 20, sw = 0.7, λw = 0.95.

A typical solution of MMC equations is shown in Fig. 8.g

5. Money Creation and Annihilation in Pictures

In modern society, where large quantities of money have to be deposited in banks,
these institutions play a unique role as record keepers.h Depositors become, in effect,

gDue to the fact that system (4.35) is rather complicated because of its high dimensionality as
well as the fact that its right-hand side is nondifferentiable, it is hard to analyze its properties in
detail, and, in particular, describe existence, multiplicity and stability of its equilibrium points.
Such an analysis will be presented at a later point. Our numerical experiments suggest that Fig. 8
shows a representative solution.
hIn general, in developed economies, the proportion of cash versus bank deposits is rather small.
However, when very large denomination notes are available, they are frequently used in lieu of
bank accounts.
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unsecured junior creditors of banks. If a bank were to be default, it would generally
cause partial destruction of deposits. To avoid such a disturbing eventuality, banks
are required to keep sufficient capital cushions, as well as ample liquidity. In addi-
tion, deposits are insured up to a certain threshold. Without diving into nuances
of different takes on the nature of banking, we mention several books and papers
written over the last century, which reflect upon various pertinent issues, such as
Schumpeter (1912), Howe (1915), Klein (1971), Saving (1977), Sealey & Lindley
(1977), Diamond & Dybvig (1983), Fama (1985), Selgin & White (1987), Heffernan
(1996), FRB (2005), Wolf (2014).

It is very useful to have a simplified pictorial representation for the inner working
of the banking system. We start with a simple case of a single bank, or, equivalently,
the banking system as a whole. We assume that the bank in question does not
operate at full capacity, so that condition (4.2) is satisfied. If a new borrower, who
is deemed to be credit worthy, approaches the bank and asks for a reasonably-sized
loan, then the bank issues the loan by simultaneously creating on its books a deposit
(the borrower’s asset), and a matching liability for the borrower (the bank’s asset).
Figuratively speaking, the bank has created money “out of thin air”. Of course, when
the loan is repaid, the process is carried in reverse, and the money is “destroyed”.
Assuming that the interest charged on loans is greater than the interest paid on
deposits, as a result of the round-trip process bank’s capital increases.i The whole
process, which is relatively simple, is illustrated in Fig. 9. At first, the bank has 20
units of assets, 15 units of liabilities, and 5 units of equity. Then, it lends 2 units to
a credit worthy borrower. Now, it has 22 units of assets and 17 units of liabilities.
Thus, 2 units of new money are created. If the borrower repays their debt with
interest, as shown in Step 3(a), then the bank accumulates 20.5 units of assets, 15
units of liabilities, and 5.5 units of equity. If the borrower defaults, as shown in Step
3(b), then the bank ends up with 20 units of assets, 17 units of liabilities, and 3
units of equity. In both cases, 2 units of money are destroyed.

Werner executed this process step by step and described his experiences in a
recent paper (Werner 2014). It is worth noting, that in the case of a single bank,
lending activity is limited by bank’s capital capacity only and liquidity is not impor-
tant.

We now consider a more complicated case of two (or, possibly, more) banks. In
this case, it is necessary to incorporate liquidity into the picture. To this end, we
also must include a central bank into the financial ecosystem. We assume that banks
keep part of their assets in reserves (cash), which represents a liability of the central
bank.j The money creation process comprises of three stages: (a) A credit worthy
borrower asks the first bank for a loan, which the bank grants as before, namely, by
simultaneously issuing the loan (an asset for the bank and liability for the borrower)

iThe money is destroyed if the borrower defaults, as well. It this case, however, bank’s capital
naturally decreases.
jHere, cash is understood as an electronic record in the central bank ledger.
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5

0
7

Fig. 9. Credit money creation and annihilation by one commercial bank.

and crediting the borrower with a matching deposit (an asset for the borrower and
liability for the bank); (b) The borrower then either withdraws cash and deposits it
with the second bank, or orders the first bank to transfer the deposit electronically
to the second bank — a transaction that is accompanied by a matching transfer of
reserves from the first bank to the second. In either case, the liquid assets (reserves
+ cash) of the first bank go down, possibly decreasing its liquidity below a desired
level, whereas the liquid assets (reserves + cash) and those of the second bank go up,
possibly increasing its liquidity above its desired level; (c) The first bank approaches
the second bank in order to borrow its excess reserves. If the second bank deems
the first bank credit worthy, it will lend its excess reserves, in consequence creating
a link between itself and the first bank. Alternatively, if the second bank refuses
to lend its excess reserves to the first bank, the first bank has to borrow reserves
from the central bank, by using its performing assets as collateral, or outright
acquire reserves by selling assets (e.g. government bonds) to the central bank in
open market operations. Thus, the central bank lubricates the wheels of commerce
by providing liquidity to credit worthy borrowers. Its willingness to provide reserves
to commercial banks, determines in turn their willingness to issue loans to firms and
households. When the borrower repays its loan the process plays in reverse.k

kThe author is grateful to Matheus Grasselli for his valuable comments on the money creation
process.
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The money creation process, initiated when Bank I lends two monetary units to
a new borrower, results in the following changes in two banks’ balance sheets:

Step I Step II Step II

Bank I Bank II Bank I Bank II Bank I Bank II

External assets 19 24 21 24 21 24
Interbank assets 6 9 6 9 6 11
Cash 3 4 1 6 3 4
External liabilities 20 25 20 27 20 27
Interbank liabilities 3 7 3 7 5 7
Equity 5 5 5 5 5 5

(5.1)

This process is illustrated in Fig. 10. We leave it to the reader to analyze the money
annihilation process.

In summary, in contrast to a nonbanking firm, whose balance sheet can be
adequately described by a simple relationship among assets, A, liabilities, L, and
equity, K,

A = L+K, (5.2)

as is shown in Fig. 11(a), the balance sheet of a typical commercial bank must, in
addition to external assets and liabilities, incorporate more details, such as interbank
assets and liabilities, as well as cash, representing simultaneously bank’s assets and
central bank’s liabilities; see Fig. 11(b).

20

11 24
27

Fig. 10. Credit money creation by two commercial banks.
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Liabilities

Assets

Equity

(a)

Assets Liabilities

Interbank Liabilities

Interbank Assets

Equity

Cash

(b)

Fig. 11. Comparison of balance sheets of a nonfinancial company (a), and a representative com-
mercial bank (b).
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In Sec. 4, we quantitatively described a supply- and demand-driven economic
system. In this system, money is treated on a par with other goods, and the dynam-
ics of demand for loans and lending activity is understood in the supply-demand
equilibrium framework. An increasing demand for loans from firms and households
leads banks to lend more. Having said that, we should emphasize that the ability
of banks to generate new loans is not infinite. In exact parallel with physical goods,
whose overall production at full employment is physically limited by νfKf , the
process of money (loan) creation is limited by the capital capacity of the banking
system Kb/νb. Once we have embedded the flow of money in the supply-demand
framework, we can extend the model to several interconnected banks that issue
loans in the economy. These banks compete with each other for business, while, at
the same time, help each other to balance their cash holdings thus creating inter-
bank linkages. These linkages are posing risks because of potential propagation of
defaults in the system. Our main goal in the next section is to develop a parsimo-
nious model which, nevertheless, is rich enough to produce an adequate quantitative
description of the banking ecosystem. We look for a model with as few adjustable
parameters as possible rather than one over-fitted with a plethora of adjustable
calibration parameters.

6. Interlinked Banking System

Consider N banks with external as well as mutual assets and liabilities of the form

Ai +
∑
j �=i

Lji = Ai + Âi and Li +
∑
j �=i

Lij = Li + L̂i, i, j = 1, . . . , N, (6.1)

where the interbank assets and liabilities are defined as

Âi =
∑
j �=i

Lji, L̂i =
∑
j �=i

Lij . (6.2)

Accordingly, an individual bank’s capital is given by

Ki = Ai + Âi − Li − L̂i. (6.3)

We can represent banks assets and liabilities by using the following asset and liability
matrices

A = (Aij), Aii = Ai, Aij = Lji,

L =(Lij), Lii ≡ Li, i, j = 1, . . . , N.
(6.4)

By necessity, we are forced to change notation used in Sec. 4, since we understand
banks assets more broadly than before. Namely, we assume that, in addition to
simple loans, banks also invest in firms stocks and bonds. However, in the simplest
case, we can identify A ∼ Λf + Λr and L ∼ ∆f + ∆r.

Thus, by its very nature, the banking system becomes inherently linked. Various
aspects of this interconnectivity are discussed by Rochet & Tirole (1996), Freixas
et al. (2000), Pastor-Satorras & Vespignani (2001), Leitner (2005), Egloff et al.
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(2007), Allen & Babus (2009), Wagner (2010), Haldane & May (2011), Steinbacher
et al. (2014), Ladley (2013), Hurd (2016), among many others.

In the following section, we specify dynamics for asset and liabilities, which is
consistent with a possibility of defaults by borrowers, and describe possible bank
defaults. To this end, we use techniques originally developed by the present author
and his collaborators for pricing credit derivatives (Lipton & Sepp 2009, Lipton &
Shelton 2011, Lipton & Savescu 2014).

6.1. Dynamics of assets and liabilities. Default boundaries

In the simplest possible case, the dynamics of assets and liabilities is governed by
the system of SDEs of the form

dAi(t)
Ai(t)

= µdt+ σidWi(t),
dLi(t)
Li(t)

= µdt,
dLij(t)
Lij(t)

= µdt, (6.5)

where µ is growth rate, not necessarily risk neutral, Wi are correlated Brown-
ian motions, and σi are corresponding log-normal volatilities. This asset dynam-
ics reflects the fact that, in addition to credit risk, banks are facing market risk
as well.

In a more general case, the corresponding dynamics can contain jumps, as dis-
cussed in Lipton & Sepp (2009), or Itkin & Lipton (2015, 2016). Following Lipton
& Sepp (2009), we assume that dynamics for firms’ assets is given by

dAi(t)
Ai(t)

= (µ− κiλi(t))dt + σidWi(t) + (eJi − 1)dNi(t), (6.6)

whereNi are Poisson processes independent ofWi, λi are intensities of jump arrivals,
Ji are random jump amplitudes with probability densities �i(j), and κi are jump
compensators,

κi = E{eJi − 1}. (6.7)

Since we are interested in studying consequences of default, it is enough to assume
that Ji are negative exponential jumps, so that

�i(j) =
{

0, j > 0,
ϑie

ϑij j ≤ 0
(6.8)

with ϑi > 0. Diffusion processes Wi are correlated in the usual way,

dWi(t)dWj(t) = ρijdt. (6.9)

Jump processes Ni are correlated in the spirit of Marshall–Olkin (1967). We denote
by Π(N) the set of all subsets of N names except for the empty subset {∅}, and by π
a typical subset. With every π, we associate a Poisson process Nπ(t) with intensity
λπ(t). Each Ni(t) is projected on Nπ(t) as follows:

Ni(t) =
∑

π∈Π(N)

1{i∈π}Nπ(t) (6.10)
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with

λi(t) =
∑

π∈Π(N)

1{i∈π}λπ(t). (6.11)

Thus, for each bank, we assume that there are both systemic and idiosyncratic
sources of jumps. In practice, it is sufficient to consider N + 1 subsets of Π(N),
namely, the subset containing all names, and subsets containing only one name at
a time. For all other subsets, we put λπ = 0. If extra risk factors are needed, one
can include additional subsets representing particular industry sectors or countries.

The simplest way of introducing default is to follow Merton’s idea (Merton 1974)
and to consider the process of final settlement at time t = T ; see, e.g. Webber &
Willison (2011). However, given the highly regulated nature of the banking business,
it is hard to justify such a set-up. Accordingly, we prefer to model the problem in
the spirit of Black & Cox (1976) and introduce continuous default boundaries, Ξi,
for 0 ≤ t ≤ T , which are defined as follows:

Ai ≤ Ξi =

{
Ri(Li + L̂i) − Âi ≡ Ξ<i , t < T,

Li + L̂i − Âi ≡ Ξ=
i , t = T,

(6.12)

where Ri, 0 ≤ Ri ≤ 1 is the recovery rate. We can think of Ξi as a function of
external and mutual liabilities, L = {Li, L̂i}, Ξi=Ψi(L).

If the kth bank defaults at an intermediate time t′, then the capital of the remain-
ing banks is depleted. We change indexation of the surviving banks by applying the
following function

i→ i′ = φk(i) =

{
i, i < k,

i− 1 i > k.
(6.13)

We also introduce the inverse function ψk,

i→ i′ = ψk(i) =

{
i, i < k,

i+ 1 i ≥ k.
(6.14)

The corresponding asset and liability matrices A(k), L(k) assume the form

A(k) = (A(k)
ij (t)), A

(k)
ii (t) = Aψk(i)(t),

A
(k)
ij (t) = Aψk(j),ψk(i)(t),

L(k) = (L(k)
ij (t)), L

(k)
ii (t) = Lψk(i)(t) − Lψk(i),k(t′) +RkLk,ψk(i)(t′),

L
(k)
ij (t) = Lψk(i),ψk(i)(t), t > t′, i, j = 1, . . . , N − 1.

(6.15)

The corresponding default boundaries are given by

Ai ≤ Ξ(k)
i =

{
Rψk(i)(L

(k)
i + L̂

(k)
i − Â

(k)
i ), t < T,

L
(k)
i + L̂

(k)
i − Â

(k)
i , t = T.

(6.16)
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i 	= j. It is clear that

∆Λ(k)
i = Ξ(k)

i − Ξi =

{
(1 −RiRk)Â

(k)
i , t < T,

(1 −Rk)Â
(k)
i , t = T.

(6.17)

so that ∆Λ(k)
i > 0 and the default boundaries (naturally) move to the right.

6.2. Terminal settlement conditions

In order to formulate the terminal condition for the Kolmogorov equation, we need
to describe the settlement process at t = T in the spirit of Eisenberg & Noe (2001).
Let A(T ) be the vector of the terminal external asset values. Since at time T a full
settlement is expected, we assume that a particular bank will pay a fraction ωi of
its total liabilities to its creditors (both external and inter-banks). If its assets are
sufficient to satisfy its obligations, then ωi = 1, otherwise 0 < ωi < 1. Thus, the
settlement can be described by the following system of equations

min
(
Ai(T ) +

∑
j

Ljiωj, Li + L̂i
)

= ωi(Li + L̂i), (6.18)

or equivalently

Φi(ω) ≡ min



Ai(T ) +

∑
j

Ljiωj

Li + L̂i
, 1


 = ωi. (6.19)

It is clear that ω is a fixed point of the mapping Φ(ω),

Φ(ω) = ω. (6.20)

Eisenberg and Noe have shown that Φ(ω) is a nonexpanding mapping in the stan-
dard Euclidean metric, and formulated conditions under which there is just one
fixed point. We assume that these conditions are satisfied, so that for each A(T )
there is a unique ω(A(T )) such that the settlement is possible. There are no defaults
provided that ω = 1, otherwise some banks default. Let Υ be a state indicator (0, 1)
vector of length N . Denote by D(Υ) the following domain:

D(Υ) =

{
A(T ) |ωi(A(T )) =

{
1, Υi = 1

< 1 Υi = 0

}
. (6.21)

In this domain, the ith bank survives provided that Υi = 1, and defaults otherwise.
For example, in the domain D(1, . . . , 1), all banks survive, while in the domain
D(0, 1, . . . , 1), the first bank defaults while all other survive, and so on.

The actual terminal condition depends on the particular instrument under con-
sideration. If we are interested in the survival probability Q of the entire set of
banks, we have

Q(T,A) = 1A∈D(1,...,1). (6.22)
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For the marginal survival probability of the ith bank, we have

Q(T,A) = 1A∈∪
Υ(i)D(Υ(i)), (6.23)

where Υ(i) is the set of indicator vectors with Υi = 1.
Thus far, we have introduced the stochastic dynamics for assets and liabilities

for a set of interconnected banks. These dynamics explicitly allows for defaults of
individual banks. Our framework reuses heavy machinery originally developed in
the context of credit derivatives. In spite of being mathematical intense, such an
approach is necessary to quantitatively describe the financial sector as a manufac-
turer of credit.

6.3. General solution via Green’s function

Our goal is to express general quantities of interest such as marginal survival
probabilities for individual banks and their joint survival probability in terms of
Green’s function for the N -dimensional correlated jump-diffusion process in a pos-
itive orthant. The three-dimensional case without jumps is studied in detail by
Lipton & Savescu (2014). This section is rather challenging mathematically, how-
ever, it can safely be skipped at first reading without hindering comprehension of
the paper as a whole.

As usual, it is more convenient to introduce normalized nondimensional vari-
ables. To this end, we define

t̄ = Σ2t, Xi =
Σ
σi

ln
(
Ai
Ξ<i

)
, λ̄i =

λi
Σ2
, (6.24)

where

Σ =

(
N∏
i=1

σi

)1/N

. (6.25)

Thus,

t =
t̄

Σ2
, Ai = (Ri(Li + L̂i) − Âi)eσiXi/Σ. (6.26)

The scaled default boundaries have the form

Xi ≤Mi(t) =




0 ≡M<
i , t < T,

Σ
σi

ln

(
Li(0) + L̂i(0) − Âi(0)

Ri(Li(0) + L̂i(0)) − Âi(0)

)
≡M=

i , t = T.
(6.27)

The survival domain D(1, . . . , 1) is given by

D(1, . . . , 1) = {Xi > M=
i }. (6.28)

Thus, we need to perform all our calculations in the positive cone R(N)
+ .
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The dynamics of X = (X1, . . . , XN) is governed by the following equations

dXi = −
( σi

2Σ
+ κi λ̄i

)
dt̄+ dWi(t̄ ) +

Σ
σi
JidNi(t̄ )

≡ ξidt̄+ dWi(t̄ ) + ζiJidNi(t̄ ). (6.29)

Below, we omit bars for the sake of brevity and rewrite Eq. (6.29) in the form:

dXi = ξidt+ dWi(t) + ζiJidNi(t). (6.30)

The corresponding Kolmogorov backward operator has the form

L(N)f =
N∑
i=1


1

2

N∑
j=1

ρijfXiXj + ξifXi




+
∑

π∈Π(N)

λπ
∏
i∈π

Jif(X) −
∑

π∈Π(N)

λπf(X)

≡ 1
2
∆ρf + ξ · ∇f + J f − υf, (6.31)

where

J (X) =
∑

π∈Π(N)

λπ
∏
i∈π

Jif(X), (6.32)

Jif(X) = ςi

∫ Xi

0

f(X1, . . . , Xi − j, . . . , XN)e−ςijdj, (6.33)

and ςi = σiϑi/Σ.
We can formulate a typical pricing equation in the positive cone R(N)

+ . We have

∂tV (t,X) + L(N)V (t,X) = χ(t,X), (6.34)

V (t,X0,k) = φ0,k(t,Y), V (t,X∞,k) = φ∞,k(t,Y), (6.35)

V (T,X) = ψ(X), (6.36)

where X, X0,k, X∞,k, Yk are N - and N−1-dimensional vectors, respectively,

X = (X1, . . . , Xk, . . . , XN ),

X0,k = (X1, . . . , 0
k
, . . . , XN ),

X∞,k = (X1, . . . ,∞
k
, . . . , XN),

Yk = (X1, . . . , Xk−1, Xk+1, . . . , XN ).

(6.37)

Here, χ(t,X), φ0,k(t,y), φ∞,k(t,y), ψ(X) are known functions, which are contract
specific. For instance, for the joint survival probability Q(t,X), we have

χ(t,X) = 0, φ0,k(t,Y) = φ∞,k(t,Y) = 0, ψ(X) = 1X∈D(1,...,1). (6.38)

The corresponding adjoint operator is

L(N)†g(X) =
1
2
∆ρg − ξ · ∇g + J †g − υg, (6.39)
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where

J †g(X) =
∑

π∈Π(N)

λπ
∏
i∈π

J †
i g(X), (6.40)

J †
i g(X) = ςi

∫ ∞

0

g(X1, . . . , Xi + j, . . . , XN)e−ςijdj. (6.41)

It is easy to check that∫
R

(N)
+

[Jif(X)g(X) − f(X)J †
i g(X)]dX = 0. (6.42)

We solve Eqs. (6.34)–(6.36) by introducing the Green’s function G(t,X), or,
more explicitly, G(t,X; 0,X′), such that

∂tG(t,X) − L(N)†G(t,X) = 0, (6.43)

G(t, X̂(k)
0 ) = 0, G(t, X̂(k)

∞ ) = 0, (6.44)

G(0,X) = δ(X − X′). (6.45)

It is clear that

(VG)t + LVG − VL†G = χG. (6.46)

Some relatively simple algebra yields

(VG)t + ∇ · (F(V,G)) + J V G− VJ †G = χG, (6.47)

where

F = (F1, . . . , Fi, . . . , FN )

= (F (1)
1 , . . . , F

(1)
i , . . . , F

(1)
N ) + (F (2)

1 , . . . , F
(2)
i , . . . , F

(2)
N )

≡ F(1) + F(2),

F
(1)
i =

1
2
VXiG+ ξiV G+


∑
j<i

ρijVXj


G,

F
(2)
i = −1

2
V GXi − V


∑
j>i

ρijGXj


. (6.48)

Green’s theorem yields

V (0,X′) =
∫
R

(N)
+

ψ(X)G (T,X)dX

+
∑
k

∫ T

0

dt

∫
R

(N−1)
+

φ0,k(t,Y)g
K

(t,Y)dY

−
∫ T

0

∫
R

(N)
+

χ(t,X)G(t,X)dtdX, (6.49)
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where

gk(t,Y) =
1
2
GXk

(t,X1, . . . , 0
k
, . . . , XN ). (6.50)

Thus, in order to solve the backward pricing problem with nonhomogeneous right-
hand side and boundary conditions, it is sufficient to solve the forward propagation
problem for Green’s function with homogeneous right-hand side and boundary con-
ditions.

In particular, for the joint survival probability, we have

Q(0,X′) =
∫
X∈D(1,...,1)

G(T,X)dX1, . . . , dXN . (6.51)

Similarly, for the marginal survival probability of the first bank, say, we have

Q1(0,X′) =
∫
X∈D(0,...,1)

G(T,X)dX

+
∑
k

∫ T

0

dt

∫
R

(N−1)
+

Q1(t,Y)g
K

(t,Y)dY. (6.52)

7. Banks’ Balance Sheet Optimization

This section is aimed at increasing the granularity of our model. Let us recall that
first we considered a simple economy as a whole and assumed that it is driven by
stochastic demand for goods and money, and described the corresponding monetary
circuit. In this framework, physical goods and money are treated in a uniform
fashion. Next, we moved on to a more granular level and described a system of
interlinked banks that create money by accommodating external changes in demand
for it. Now, we have reached the most granular level of our theory, and consider an
individual bank. We emphasize that MMC theory described in this paper is a top-
down theory. However, once major consistent patterns from the overall economy are
traced to the level of an individual bank, the consequences for the bank profitability
and risk management are hard to overestimate.

Numerous papers and monographs deal with various aspects of the bank balance
sheet optimization problem. Here, we mention just a few. Kusy & Ziemba (1986)
develop a multi-period stochastic linear programming model for solving a small
bank asset and liability management (ALM) problem. dos Reis & Martins (2001)
develop an optimization model and use it to choose the optimal categories of assets
and liabilities to form a balance sheet of a profitable and sound bank. In a series of
papers, Petersen and coauthors analyze bank management via stochastic optimal
control and suggest an optimal portfolio choice and rate of bank capital inflow
that keep the loan level close to an actuarially determined reference process; see,
e.g. Mukuddem-Petersen & Petersen (2006). Dempster et al. (2009) show how to
use dynamic stochastic programming in order to perform optimal dynamic ALM
over long time horizons; their ideas can be expanded to cover a bank balance sheet
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optimization. Birge & Judice (2013) propose a dynamic model which encompasses
the main risks in balance sheets of banks and use it to simulate bank balance
sheets over time given their lending strategy and to determine optimal bank ALM
strategy endogenously. Halaj (2012) proposes a model of optimal structure of bank
balance sheets incorporating strategic and optimizing behavior of banks under stress
scenarios. Astic & Tourin (2013) propose a structural model of a financial institution
investing in both liquid and illiquid assets and use stochastic control techniques to
derive the variational inequalities satisfied by the value function and compute the
optimal allocations of assets. Selyutin & Rudenko (2013) develop a novel approach
to ALM problem based on the transport equation for loan and deposit dynamics.

To complement the existing literature, we develop a framework for optimizing
enterprise business portfolio by mathematically analyzing financial and risk met-
rics across various economic scenarios, with an overall objective to maximize risk
adjusted return, while staying within various constraints. Regulations impose mul-
tiple capital requirements and constraints on the banking industry (such as B3S
and B3A capital ratios, leverage ratios, and liquidity coverage ratios).

The economic objective of the balance sheet optimization for an individual bank
is to choose the level of loans, deposits, investments, debt and capital in such a way
as to satisfy Basel III rules and, at the same time, maximize cash flows attributable
to shareholders. Balance sheet optimization boils down to solving a very involved
Hamilton–Jacobi–Bellman problem. The optimization problem can be formulated
in two ways: (a) Optimize cashflows without using a risk preference utility function,
or, equivalently, being indifferent to the probability of loss vs. profits; (b) Introduce
a utility function into the optimization problem and solve it in the spirit of Merton’s
optimal consumption problem. Although, as a rule, balance sheet optimization has
to be done numerically, occasionally, depending on the chosen utility function, a
semi-analytical solution can be obtained.

7.1. Notations and main variables

Let us introduce key notation. We try to keep it as consistent as possible with the
one used in Sec. 4. However, we need to introduce some additional quantities such
as bank’s investments in stocks, bank’s cash, and so on, which were not considered
earlier.

Bank’s assets A in increasing order of liquidity have the form

Λπk , outstanding bank’s loans with maturity Tk and quality p,

S, bank’s investments in stocks and bonds,

C, bank’s cash.

We assume that T1 < · · · < Tk < · · · < TK , and p = 1, . . . , P . Quality of loans is
determined by various factors, such as the rating of the borrower, collateralization.
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Bank’s liabilities L and capital K in increasing order of stickiness have the form

∆, deposits,

Bql , outstanding bank’s borrowings with maturity Tl and quality q,

K, bank’s capital (or equity).

We assume that T1 < · · · < Tl < · · · < TL, and q = 1, . . . , Q. Quality of borrowings
is determined by various factors, such as its seniority, and collateralization.

Thus, bank’s assets, liabilities, and capital have the form

A =
∑
k,p

Λpk + S + C, L = ∆ +
∑
l,q

Bql , K = A− L. (7.1)

Assets and liabilities have the following properties: (a) Loans and debts are
characterized by their repayment/loss rates λpk and µql , and interest rates νpk and
ξql ; (b) Similarly, for deposits, we have rates α and β, respectively; (c) Finally,
for investments, the corresponding growth rates are stochastic and have the form
r − ζ + σχ(t), where r is the expected growth rate, ζ is the dividend rate, σ is
the volatility of returns on investments, and χ(t) = dW (t)/dt is white noise, or
“derivative” of the standard Brownian motion, so that

dS = (r − ζ)Sdt+ σSdW. (7.2)

Balance sheet balancing equation has the form:∑
k,p

Λpk + S + C = ∆ +
∑
l,q

Bql +K. (7.3)

Below, we omit subscripts and superscripts for brevity and rewrite the equation of
balance as follows:

Λ + S + C − ∆ −B −K = 0. (7.4)

There are several controls and levers for determining general direction of the
bank: (a) rates φ(t) at which new loans are issued; (b) rates ψ(t) at which new
borrowings are obtained; (c) rate ω(t) at which new investments are made; (d) rate
π(t) at which new deposits are acquired; (e) rate δ(t) at which money is returned
to shareholders in the form of dividends or share buy-backs. If δ(t) < 0, then new
stock is issued. Of course, dividends should not be paid when new shares are issued.

The evolution of the bank’s assets and liabilities is governed by the following
equations:

Λ′(t) = −λΛ(t) + Φ(t),

S′(t) = (r − ζ + σχ(t))S(t) + ω(t),

C′(t) = −Λ′(t) + νΛ(t) + ζS(t) − ω(t)

+ ∆′(t) − β∆(t) + B′(t) − ξB(t) − δ(t)
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= (λ+ ν)Λ(t) − Φ(t) + ζS(t) − ω(t)

− (α+ β)∆(t) + π(t) − (µ+ ξ)B(t) + Ψ(t) − δ(t),

(7.5)

and

∆′(t) = −α∆(t) + π(t),

B′(t) = −µY (t) + Ψ(t),

K ′(t) = νΛ(t) + S′(t) + ζS(t) − ω(t) − β∆(t) − ξB(t) − δ(t)

= νΛ(t) + (r + σχ(t))S(t) − β∆(t) − ξB(t) − δ(t), (7.6)

respectively. Here, for convenience, instead of φ(t) and ψ(t) we use Φ(t) and Ψ(t),
defined as follows:

Φ(t) = φ(t) − e−λTφ(t− T ),

Ψ(t) = ψ(t) − e−µTψ(t− T ),
(7.7)

respectively.
On the bank’s asset side, outstanding loans decay deterministically proportion-

ally to their repayment rate and increase due to new loans issued less amortized
old loans repaid. Existing investments grow stochastically as in Eq. (7.2) and are
complemented by new investments. Changes in cash balances are influenced by sev-
eral factors. On the one hand, prepaid loans, interest charged on outstanding loans,
dividends on investments, new deposits, and new borrowings positively contribute
to cash balances. On the other hand, new investments, interest paid on deposits and
borrowings, withdrawn deposits and losses on lending, as well as money returned
to the shareholders as dividends and/or share buy-backs lead to reduction in the
bank cash position.

On the bank’s liability side, deposits decay deterministically proportionally to
their withdrawal rate and increase due to new deposits coming in. Outstanding
bank’s debts decay deterministically at their repayment rate, and increase due to
new borrowings less amortized old debts repaid. Similarly to changes in cash on the
asset side, changes in capital (equity) on the liability side are positively affected by
the interest paid on outstanding loans, stochastic returns on investments (including
dividends), and negatively affected by interest paid on deposits, borrowings, and
dividends paid to the shareholders.

The balancing equation (7.4) after differentiation becomes

Λ′ + S′ + C′ − ∆′ −B′ −K ′ = 0, (7.8)

and is identically satisfied by virtue of equations (7.5), (7.6) since

Λ′ + S′ + C′ − ∆′ −B′ −K ′

= Λ′ + S′ − Λ′ + νΛ + ζS − ω + ∆′ − β∆ +B′ − ξB − δ

−∆′ −B′ − νΛ − S′ − ζS + ω + β∆ + ξB + δ = 0.

(7.9)
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7.2. Optimization problem

The cashflow CF(T ) attributable to the common equity up to and including some
terminal time T is determined by the discounted expected value of change in equity
plus the discounted value of money returned to shareholders over a given time
period. By using Eq. (7.6), CF(T ) can be calculated as follows:

CF (T ) = e−RTE{K(T )} −K(0) +
∫ T

0

e−Rtδ(t)dt

= e−RTE

{∫ T

0

K ′(t) + e−R(t−T )δ(t)dt

}

= e−RTE

{∫ T

0

(νΛ(t) + (r + σχ(t))S(t)

− β∆(t) − ξB(t) − δ(t) + e−R(t−T )δ(t))dt

}

= e−RT
∫ T

0

(νΛ(t) + rJ(t) − β∆(t) − ξB(t)

+ (e−R(t−T ) − 1)δ(t))dt.

(7.10)

Here, R is the discount rate, and J (t) is the expected value of investments S (t)
with dividends reinvested. The deterministic governing equation for J has the form:

J′(t) = rJ(t) + ω(t). (7.11)

Accordingly, in order to optimize the balance sheet at the most basic level, we
need to maximize CF(T ), viewed as a functional depending on φ(t), ω(t), π(t), ψ(t),
and δ(t):

CF(T ) −→
φ(t),ω(t),π(t),ψ(t),δ(t)

max . (7.12)

However, this optimization problem is subject to various regulatory constraints,
such as capital, liquidity, leverage, some of which are explicitly described below.
Clearly, the problem has numerous degrees of freedom, which can be reduced some-
what by assuming, for example, that φ(t), ω(t), π(t), ψ(t), δ(t) are time independent.

7.3. Capital constraints

Regulatory capital calculations are fairly complicated. They are based on system-
atizing and aggregating bank portfolio’s assets into risk groups and assigning risk
weights to each group. Therefore, for determining risk weighted assets (RWAs), it
is necessary to classify loans and investments as held to maturity (HTM), available
for sale (AFS), or belonging to the trading book (TB).

We start with HTM and AFS bonds. We can use either the standard model
(SM), or an internal rating based model (IRBM). SM represents RWA in the form:

RWASM = rwaSM · Λ, (7.13)
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where the weights rwaSM = (rwapSM,k) are regulatory prescribed, and

rwaSM · Λ =
∑
k,p

rwapSM,kΛ
p
k. (7.14)

Alternatively, IRBM provides the following expression for the RWAs:

RWAIRBM = rwaIRBM · Λ, (7.15)

where the weights rwaIRBM = (rwapIRBM,k) are given by relatively complex formulas,
which are omitted for brevity. In both cases, the corresponding regulatory capital
is given by

K(1) = κRWA. (7.16)

Additional amounts of capital K(2),K(3),K(4) are required to cover counterparty,
operational and market risks, respectively, so that the total amount of capital the
bank needs to hold is given by

K(1,2,3,4) = K(1) +K(2) +K(3) +K(4). (7.17)

It is clear that for a bank to be a going concern, the following inequality has to be
satisfied

K −K(1,2,3,4) > 0. (7.18)

7.4. Liquidity constraints

We formulate liquidity constraints in terms of the following quantities:
(a) Required stable funding (RSF):

RSF = rsfΛ · Λ + rsfS · S + 0 · C. (7.19)

(b) Available Stable Funding (ASF):

ASF = asf∆ · ∆ + asfB ·B + 1 ·K. (7.20)

Here, rsfΛ = (rsfpk), and

rsfΛ · Λ =
∑
k,p

rsfpkΛ
p
k. (7.21)

In addition, we define:
(c) Stylized 30-day cash outflows (CO)

CO = co∆ · ∆ + coB ·B + 0 ·K. (7.22)

(d) Stylized 30-day cash inflows (CI):

CI = ciΛ · Λ + ciS · S + 1 · C. (7.23)

Here, the weights rsfΛ, rsfS , asf∆, asfB, co∆, coB, ciΛ, ciS are prescribed by the
regulators.
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In order to comply with Basel III requirements, it is necessary to have:

ASF > RSF, (7.24)

CI > CO, (7.25)

or equivalently,

−rsf · Λ − rsfS · S + asf∆ · ∆ + asf · B +K > 0, (7.26)

ci · Λ + ciS · S + C − co∆ · ∆ − co · B > 0. (7.27)

In words, Eqs. (7.26) and (7.27) indicate that having large amounts of equity, K
and cash, C is beneficial for the bank’s liquidity position (but not for its earnings!).

7.5. Mathematical formulation: General optimization problem

A general optimization problem can be formulated in terms of independent variables
Λ, S, C,∆, B defined in the multi-dimensional domain given by the corresponding
constraints.

There are adjacent domains where complementary variational inequalities are
satisfied. The corresponding HJB equation reads:

max
φ,ω,π,ψ,δ




Vt +
1
2
σ2S2VSS + (−λΛ + Φ)VΛ + (r − ζ)SVS

+ ((λ+ ν)Λ − Φ + ζS − ω

− (α+ β)∆ + π − (µ+ ξ)B + Ψ)VC

+ (−α∆ + π)V∆ + (−µB + Ψ)VB −RB,

1 − VC




= 0. (7.28)

In the limit of T → ∞, the problem simplifies to (but still remains very complex):

max
φ,ω,π,ψ,δ




1
2
σ2S2VSS + (−λΛ + Φ)VΛ + (r − ζ)SVS

+ ((λ+ ν)Λ − Φ + ζS − ω

− (α+ β)∆ + π − (µ+ ξ)B + Ψ)VC

+ (−α∆ + π)V∆ + (−µB + Ψ)VB −RB,

1 − VC




= 0. (7.29)

7.6. Mathematical formulation: Simplified optimization problem

Instead of dealing with several independent variables, Λ, . . . , B, we concentrate on
the equity portion of the capital structure, K, which follows the effective evolution
equation:

dK = (µ− d)dt+ σdW − J1dN1 − J2dN2, (7.30)

where µ is the accumulation rate, d is the dividend rate, which we wish to optimize,
σ is the volatility of earnings,W is Brownian motion,N1,2 are two independent Pois-
son processes with frequencies λ1,2, and J1,2 are exponentially distributed jumps,
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Ji ∼ δi exp(−δij). The choice of the jump-diffusion dynamics with two independent
Poisson drivers reflects the fact that the growth of the bank’s equity is determined
by retained profits, which are governed by an arithmetic Browinian motion, and
negatively affected by two types of jumps, namely, more frequent (but slightly less
dangerous due to potential actions of the central bank) liquidity jumps represented
by N2, and less frequent (but much more dangerous) solvency jumps represented
by N1. Accordingly, λ1 > λ2, and δ1 < δ2. Below, we assume that the dividend
rate is potentially unlimited, so that a lump sum can be paid instantaneously. A
similar problem with just one source of jumps has been considered in the context
of an insurance company interested in maximization of its dividend pay-outs (see,
e.g. Taksar 2000, Belhaj 2010, references therein).

The bank defaults when K crosses zero. We shall see shortly that it is optimal
for the bank not to pay any dividend until K reaches a certain optimal level K∗,
and when this level is reached, to pay all the excess equity in dividends at once.
With all the specifics in mind, the dividend optimization problem (7.28) can be
mathematically formulated as follows:

max
d




Vt +
1
2
σ2VKK + (µ− d)VK − (R + λ1 + λ2)V

+λ1δ1

∫ K

0

V (K − J1)e−δ1J1dJ1

+λ2δ2

∫ K

0

V (K − J2)e−δ2J2dJ2 + d




= 0, (7.31)

V (T,K) = K, K ≥ 0, (7.32)

V (t, 0) = 0, 0 ≤ t ≤ T. (7.33)

Solving Eq. (7.31) supplemented with terminal and boundary conditions (7.32) and
(7.33) is equivalent to solving the following variational inequality:

max




Vt +
1
2
σ2VKK + µVK − (R+ λ1 + λ2)V

+λ1δ1

∫ K

0

V (K − J1)e−δ1J1dJ1

+λ2δ2

∫ K

0

V (K − J2)e−δ2J2dJ2,

1 − VK




= 0, (7.34)

augmented with conditions (7.32) and (7.33). We use generic notation to rewrite
Eq. (7.34) as follows:

max{Vt + a2VKK + a1VK + a0V + λ1I1 + λ2I2, 1 − VK} = 0, (7.35)
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where

Ii(t,K) = δi

∫ K

0

V (t,K − Ji)e−δiJidJi = δi

∫ K

0

V (t, j)e−δi(K−j)dj, i = 1, 2.

(7.36)

Symbolically, we can represent Eq. (7.35) in the form

max{Vt + L(V ), 1 − VK} = 0, (7.37)

where

L(V ) = a2VKK + a1VK + a0V + λ1I1 + λ2I2. (7.38)

Solution V (t,K) of this variational inequality cannot be computed analytically
and has to be determined numerically. To this end, we use the method proposed by
Lipton (2003) and replace the variational inequality in question by the following one:

max{−Vτ + a2VKK + a1VK + a0V + λ1I1 + λ2I2, 1 − VK} = 0,

Ii,K + δiIi − δiV = 0, V (0,K) = K, V (τ, 0) = 0,
(7.39)

where τ = T − t. The corresponding problem is solved in a relatively straightfor-
ward way by computing Ii and performing the operation max {., .} explicitly, while
calculating V in the usual Crank–Nicolson manner. The corresponding solution is
shown in Fig. 12.

For the T → ∞ limit, the time-independent maximization problem has the form

max{L(V ), 1 − VK} = 0, V (0) = 0, (7.40)

Fig. 12. Excess value V (T, K)−K viewed as a function of time to maturity T and equity value K
for some representative parameters: σ = 0.25, µ = 0.05, ν = 0.10, λ1 = 0.05, δ1 = 3.00, λ2 = 0.02,
δ2 = 1.00.
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or, equivalently,

L(V )(K) = 0, 0 < K ≤ K∗,

V (K) = K + V (K∗) −K∗, K∗ < K <∞,

V (0) = 0, VK(K∗) = 1, VEE(K∗) = 0.

(7.41)

Here, K∗ is not known in advance and has to be determined as part of the
calculation.

It turns out that the time-independent problem can be solved analytically. Since
we are dealing with a Levy process, we have

L(eξK) = Ψ(ξ)eξK − λ1δ1
ξ + δ1

e−δ1K − λ2δ2
ξ + δ2

e−δ2K , (7.42)

where Ψ(ξ) is the symbol of the pseudo-differential operator L,

Ψ(ξ) = a2ξ
2 + a1ξ + a0 +

λ1δ1
ξ + δ1

+
λ2δ2
ξ + δ2

. (7.43)

Denote by ξj , j = 1, . . . , 4, the roots of the (polynomial) equation

Ψ(ξ) = 0. (7.44)

The corresponding function Ψ(ξ) for a representative set of parameters is exhib-
ited in Fig. 13, which clearly shows that all roots of Eq. (7.44) are real.

Fig. 13. Function Ψ(ξ) for the same set of parameters as used in Fig. 12. It is easy to see that
equation Ψ(ξ) = 0 has four roots ξ1 = −4.08, ξ2 = −2.06, ξ3 = −0.84, and ξ4 = 1.37.
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(a)

(b)

Fig. 14. Excess value V (T, K) − K viewed as a function of equity value K for different times T
(a); limiting excess value V (inf, K) − K viewed as a function of equity value K (b). (a) and (b)
agree perfectly. The same parameters as in Fig. 12 are used.
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Then, a linear combination

V (K) =
∑
j

Cje
ξjK , (7.45)

solves the pricing problem and the boundary conditions (7.41) provided that


1 1 1 1

(ξ1 + δ1)−1 (ξ2 + δ1)−1 (ξ3 + δ1)−1 (ξ4 + δ1)−1

(ξ1 + δ2)−1 (ξ2 + δ2)−1 (ξ3 + δ2)−1 (ξ4 + δ2)−1

ξ1e
ξ1K

∗
ξ2e

ξ2K
∗

ξ3e
ξ3K

∗
ξ4e

ξ4K
∗

ξ21e
ξ1K

∗
ξ22e

ξ2K
∗

ξ23e
ξ3K

∗
ξ24e

ξ4K
∗






C1

C2

C3

C4


 =




0
0
0
1
0


. (7.46)

Equation (7.46) should be thought of as a system of five equations for five unknowns,
namely, (C1, C2, C3, C4) and K∗. The corresponding profile V (K) is presented in
Fig. 14.

This graph shows that on the interval [0,K∗) we have VK > 1. Accordingly,
the coefficient (1 − VK) in front of d in Eq. (7.31) is negative, so that the optimal
d has to be zero. To put it differently, it is optimal for the bank not to pay any
dividends until K reaches the optimal level K∗. On the interval (K∗,∞), we have
VK > 1, so that d is not determined. However, this is not particularly important,
since when K exceeds the optimal level K∗, it is optimal to pay all the excess equity
in dividends. This situation occurs because we allow for infinite dividend rate, and
hence lump-sum payments. When d is bounded, the corresponding optimization
problem is somewhat different, but can still be solved along similar lines.

Comparison of Figs. 14(a) and 14(b) shows that V (K) is an excellent approxi-
mation for V (T,K) for longer maturities T .

8. Conclusions

In this paper, we have proposed a simple and consistent theory that enables one
to examine the banking system at three levels of granularity, namely, as a whole,
as an interconnected collection of banks with mutual liabilities; and, finally, as an
individual bank. We have demonstrated that the banking system plays a pivotal role
in the monetary circuit context and is necessary for the success of the economy. Even
in a relatively simple context, we have gained some nontrivial insights into money
creation by banks and its consequences, including naturally occurring interbank
linkages, as well as the role of multiple constraints banks are operating under.

The consistent quantitative description of the monetary circuit in continuous-
time became possible after the introduction of stochastic consumption by rentiers
into the model, which enabled us to reconcile the equations with economic reality.
We have built a quantitative description of the monetary circuit that can be cali-
brated to real macro economic data which we solved mathematically. The developed
framework can be further expanded by adding various sectors of the economy. It is
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clear that more advanced models will naturally provide deeper actionable insights,
which can be used for a variety of purposes, such as setting the monetary policy,
positioning banks for responsible growth, and macro investing.

At the top level, we have considered the banking system as a whole, disguis-
ing therefore the structure of the banking sector and precluding investigation of
defaults within it. It is hard to overestimate the importance of the quantitative
approach that enables the description of a possible chain of events in the intercon-
nected banking system in the aftermath of the crisis of 2007–2009. Hence, we have
expanded our analysis to the intermediate level, and demonstrated how the asset–
liability balancing act creates nontrivial linkages between various banks. We have
used techniques developed for credit default pricing to show that these linkages can
cause unexpected instabilities in the overall system. Our model can be expanded
in several directions, for instance, by incorporating interbank derivatives, such as
swaps, into the picture. It can provide insights into snowball effects associated with
multiple simultaneous (or almost simultaneous) defaults in the banking system.

Finally, viewed at the bottom level, banks, as all other corporations, have a
fiduciary obligation to responsibly maximize their profitability. Given the specifics
of the banking business, such a maximization of profitability is intrinsically linked to
balance sheet optimization, which is used in order to choose an optimal mix of assets
and liabilities. We have formulated the constrained optimization problem in the
most general case, as well as its reduced version in a specific case of the equity part
of the capital structure. Although simplified, the reduced problem still includes such
salient elements of the equity dynamics as liquidity and solvency jumps. We have
proposed a scheme to efficiently solve the corresponding constrained optimization
problem.

We hope that our theory of MMC will stimulate further research along the
lines suggested in the paper. In particular, it can be used to help predicting future
economic crises, which naturally arise within the proposed framework, with a view
of moderating or even eliminating some aspects of the unpleasant consequences.
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Appendix A

To make our calculations in Sec. 6 more concrete, let us consider the case of just
two banks with mutual obligations without netting, N = 2. Additional details can
be found in Itkin & Lipton (2016).

For 0 < t < T , default boundaries have the form

Ai ≤ Ξi =

{
Ri (Li + Liı̄) − Lı̄i ≡ Ξ<i , t < T,

Li + Liı̄ − Lı̄i ≡ Ξ=
i , t = T,

(A.1)

Ai ≤ Ξ̃i =

{
Ri (Li + Liı̄ −Rı̄Lı̄i) ≡ Ξ̃<i , t < T,

Li + Liı̄ −Rı̄Lı̄i ≡ Ξ̃=
i , t = T,

(A.2)

where ı̄ = 3 − i. In the (A1, A2) quadrant, we have four domains

D(1, 1) = {A1 > Ξ=
1 , A2 > Ξ=

2 },

D(δi,1, δi,2) =
{
Ai >

� − Lı̄iAı̄
Lı̄ + Lı̄i

,Ξ<ı̄ < Aı̄ < Ξ=
ı̄

}
, i = 1, 2,

D(0, 0) = {A1 > Ξ<1 , A2 > Ξ<2 } − D(1, 1) −D(1, 0) −D(0, 1), (A.3)

where δi,j is the Kronecker delta, and

� = L1L2 + L1L21 + L2L12. (A.4)

It is clear that in D(1, 1), both banks survive, in D(1, 0), the first bank survives and
the second defaults, in D(0, 1), the second bank survives and the first defaults, and in
D(0, 0t), both banks default. The corresponding domains are shown in Fig. A.1(a).

In log coordinates, the domain Di has the form

D(δi,1, δi,2) = {Xi > Θi(Xı̄), 0 < Xı̄ < M=
ı̄ }, (A.5)

where

Θi(Xı̄) =
√
σı̄
σi

ln

(
� − Lı̄i(Rı̄(Lı̄ + Lı̄i) − Liı̄) exp(

√
σı̄/σiXı̄)

(Ri(Li + Liı̄) − Lı̄i)(Lı̄ + Lı̄i)

)
. (A.6)

We emphasize that the domain Di has a curvilinear boundary which depends on
the value of Ai. It is worth noting that

Θi(0) = M̃=
i , Θi(µ=

ı̄ ) = M=
i . (A.7)

The corresponding domains are shown in Fig. A.1(b).
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0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60
X_1

(b)

Fig. A.1. Default boundaries for two interconnected banks in the (A1, A2) plane (a), and in the
(X1, X2) plane (b). Here, L1 = 50, L12 = 10, R1 = 0.4, L2 = 60, L21 = 20, R2 = 0.4.

Payoffs for different options are as follows. For the joint survival probability,

Q(T,A1, A2) = 1(A1,A2)∈D(1,1),

Q(t, δi,1Ξ<i + δi,2Aı̄, δi,2Ξ<i + δi,1Aı̄) = 0, i = 1, 2. (A.8)

For marginal survival probabilities,

Qi(T,A1, A2) = 1(A1,A2)∈D(1,1)+D(δi,1,δi,2). (A.9)
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For the CDSs on the first and second bank, the payoffs are as follows:

Ci(T,A1, A2) =




0, (A1, A2) ∈ D(1, 1) + D(δi,1, δi,2),

1 − Ai + Lı̄i
Li + Liı̄

, (A1, A2) ∈ D(δı̄,1, δı̄,2),

1 − Ai + κı̄Lı̄i
Li + Liı̄

, (A1, A2) ∈ D(0, 0),

(A.10)

where the coefficients κi are determined from the detailed balance equations

A1 + κ2L21 = κ1(L1 + L12),

A2 + κ1L12 = κ2(L2 + L21), (A.11)

so that

κi =
Lı̄Ai + Lı̄i(Ai +Aı̄)

�
. (A.12)

Finally, for the FTD, the payoff has the form

F (T,A1, A2)

=




0, (A1, A2) ∈ D(1, 1),

1 − Aı̄ + Liı̄
Lı̄ + Lı̄i

(A1, A2) ∈ D(δi,1, δi,2),

max
{

1 − A1 + κ2L21

L1 + L12
, 1 − A2 + κ1L12

L2 + L21

}
, (A1, A2) ∈ D(0, 0).

(A.13)

For brevity, we consider just the calculation of the joint and marginal survival
probabilities. The joint survival probability Q(t,X1, X2) solves the following termi-
nal boundary value problem

Qt(t,X1, X2) + LQ(t,X1, X2) = 0,

Q(T,X1, X2) = 1X∈D(1,1),

Q(t,X1, 0) = 0, Q(t, 0, X2) = 0. (A.14)

The corresponding marginal survival probability for the first bank, say,
Q1(t,X1, X2), which is a function of both X1 and X2 solves the following termi-
nal boundary value problem

Q1,t(t,X1, X2) + LQ1(t,X1, X2) = 0,

Q1(T,X1, X2) = 1X∈D(1,1) + 1X∈D(1,0),

Q1(t, 0, X2) = 0,

Q1(t,X1, 0) =

{
q1(t,X1), X1 ≥M

(2),<
1 ,

0, X1 < M
(2),<
1 .

(A.15)
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Here, q1(t,X1) is the 1D survival probability, which solves the following terminal
boundary value problem

q1,t(t,X1) +
1
2
q1,X1X1 + ξ1q1,X1 = 0,

q1(T,X1) = 1{X1>M
(2),=
1 },

q1(t,M
(2),<
1 ) = 0.

It is very easy to show that

q1(t,X ′
1) = N

(
−M

(2),=
1 −X ′

1 − ξ1τ√
τ

)

− e−2ξ1(X
′
1−M(2),<

1 )N

(
−M

(2),=
1 +X ′

1 − 2M (2),<
1 − ξ1τ√

τ

)
, (A.16)

where τ = T − t.
The corresponding 2D Green’s function has the form (see, e.g. Lipton 2001,

Lipton & Savescu 2014):

G(t,X1, X2) = e−(θ,ξ)t/2+θ·(X−X′)Ḡ(t,X1, X2),

Ḡ(t,X1, X2) =
2e−(R2+R′2)/2t

ρ̄�t

∞∑
n=1

Iνn

(
RR′

t

)
sin(νnφ) sin(νnφ′), (A.17)

where

C =
(

1 ρ

ρ 1

)
, C−1 =

1
ρ̄2

(
1 −ρ
−ρ 1

)
,

θ = C−1ξ, ρ̄ =
√

1 − ρ2,

� = arctan
(
− ρ̄
ρ

)
, νn =

nπ

�
> n,

R =
√

(C−1X,X), R′ =
√

(C−1X ′, X ′),

φ = arctan
(

ρ̄X1

−ρX1 +X2

)
, φ′ = arctan

(
ρ̄X ′

1

−ρX ′
1 +X ′

2

)
.

(A.18)

It is clear that

GX2(t,X1, 0) = e−(θ,ξ)t/2+θ1X1−θ·X′
ḠX2(t,X1, 0),

ḠX2(t,X1, 0) =
2e−(X2

1/ρ̄
2+R′2)/2t

�tX1

∞∑
n=1

(−1)n+1νnIνn

(
X1R

′

ρ̄t

)
sin(νnφ′). (A.19)

Substitution of these formulas in Eqs. (6.51) and (6.52) yield semi-analytical expres-
sions for Q and Q1. The corresponding expression for Q2 is similar.

We present Q1(0, X1, X2) and the difference q1(0, X1) − Q1(0, X1, X2) in
Figs. A.2(a) and A.2(b), respectively. These figures show that mutual obligations
significantly impact survival probabilities and other quantities of interest.
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(a)

(b)

Fig. A.2. Marginal survival probability Q1(0, X1, X2) (a); decrease in marginal survival probability
q1(0, X1) − Q1(0, X1, X2) due to mutual liabilities between two banks (b). We use the same
parameters as in Fig. A.1. In addition, we choose σ1 = σ2 = 0.4, ρ12 = 0, µ = 0, T = 12.5Y .
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G. Halaj (2012) Optimal balance sheet structure of a bank: Bank reactions to stressful

market conditions, European Central Bank Working Paper.

1650034-53

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

June 29, 2016 14:31 WSPC/S0219-0249 104-IJTAF SPI-J071
1650034

A. Lipton

A. Haldane & R. May (2011) Systemic risk in banking ecosystems, Nature 469 (7330),
351–355.

R. F. Harrod (1939) An essay in dynamic theory, The Economic Journal 49 (193), 14–33.
D. Harvie, M. Kelmanson & D. Knapp (2007) A dynamical model of business-cycle asym-

metries: Extending Goodwin, Economic Issues 12, 53–92.
S. Heffernan (1996) Modern Banking in Theory and Practice, Chichester: John Wiley and

Sons.
R. H. Howe (1915) The Evolution of Banking; A Study of the Development of the Credit

System, Chicago, Illinois: C.H. Kerr & Company.
T. R. Hurd (2016) Contagion! The Spread of Systemic Risk in Financial Networks, Berlin,

Heidelberg, New York: Springer.
A. N. Huu & B. Costa-Lima (2014) Orbits in a stochastic Goodwin–Lotka–Volterra model,

Journal of Mathematical Analysis and Applications 419 (1), 48–67.
G. K. Ingham (2004) The Nature of Money, Cambridge: Polity Press.
A. Itkin & A. Lipton (2015) Efficient solution of structural default models with correlated

jumps and mutual obligations, International Journal of Computer Mathematics 92,
2380–2405.

A. Itkin & A. Lipton (2016) Structural default model with mutual obligations, Review of
Derivatives Research, to appear.

W. S. Jevons (1875) Money and the Mechanism of Exchange, London: Macmillan.
M. Kalecki (1971) Selected Essays on the Dynamics of the Capitalist Economy 1933–1970,

Cambridge: Cambridge University Press.
M. Kalecki (2007) Essays in the theory of economic fluctuations (1939). In: Collected

Works of Michael Kalecki,. Vol. I; Capitalism, Business and Full Employment (J.
Osiatynski, ed.), 235–252. Oxford: Clarendon Press.

S. Keen (1995) Finance and economic breakdown: Modelling Minsky’s financial instability
hypothesis, Journal of Post Keynesian Economics 17, 607–635.

S. Keen (2001) Debanking Economics. The Naked Emperor of the Social Sciences, London
and New York: Zed Books.

S. Keen (2013) A monetary Minsky model of the great moderation and the great recession,
Journal of Economic Behavior & Organization 86, 221–235.

S. Keen (2014) Secular stagnation and endogenous money, Real World Economics Review
66, 2–11.

J. M. Keynes (1930) A Treatise on Money. London: Macmillan.
J. M. Keynes (1936) The General Theory of Employment, Interest, and Money. London:

Macmillan.
M. A. Klein (1971) A theory of the banking firm, Journal of Money, Credit and Banking

3, 205–218.
G. F. Knapp (1905) Staatliche Theorie des Geldes. Leipzig: Duncker & Humblot.
N. R. Kocherlakota (1998) Money is memory, Journal of Economic Theory 81, 232–251.
J. Kodera & M. Vosvrda (2007) Goodwin’s predator–prey model with endogenous techno-

logical progress. Institute of Economic Studies, Faculty of Social Sciences, Charles
University in Prague. Working Paper.

M. I. Kusy & W. T. Ziemba (1986) A bank asset and liability management model, Oper-
ations Research 34 (3), 356–376.

D. Ladley (2013) Contagion and risk-sharing on the inter-bank market, Journal of Eco-
nomic Dynamics and Control 37 (7), 1384–1400.

M. Lavoie (2001) Endogenous money in a coherent stock-flow framework. Working Paper
No. 325. Annandale-on-Hudson, New York: The Levy Economics Institute.

1650034-54

In
t. 

J.
 T

he
or

. A
pp

l. 
Fi

na
n.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
07

/1
8/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

June 29, 2016 14:31 WSPC/S0219-0249 104-IJTAF SPI-J071
1650034

Modern Monetary Circuit Theory

M. Lavoie (2004) Circuit and coherent stock-flow accounting. In: Money, Credit and the
Role of the State (R. Arena & N. Salvadori, eds.), Aldershot: Ashgate.

M. Lavoie & W. Godley (2001–2002) Kaleckian growth models in a stock and flow mon-
etary framework: A Kaldorian view, Journal of Post Keynesian Economics 24 (2),
277–312.

J. Law (1705) Money and Trade Considered with a Proposal for Supplying the Nation with
Money. Glasgow: R. & A. Foulis.

E. Le Heron (2009) Financial crisis and banking behavior in a post-Keynesian stock-flow
consistent model. Centre d’Economie de l’Université Paris Nord. Working Paper.
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