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Abstract In this paper we consider mutual obligations in an interconnected bank
system and analyze their impact on the joint and marginal survival probabilities for
individual banks. We also calculate prices of the corresponding credit default swaps
and first-to-default swaps. To make the role of mutual obligations more transparent,
we develop a simple structural default model with banks’ assets driven by correlated
multidimensional Brownian motion with drift. We calculate closed form expressions
for many quantities of interest and use them for the efficient model calibration. We
demonstrate that mutual obligations have noticeable impact on the system behavior.
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16 A. Itkin, A. Lipton

1 Introduction

The structural default framework is widely used for assessing credit risk of the corpo-
rate debt. In its simplest form, it was introduced in the seminal work (Merton 1974),
and was further extended in various papers, see a survey in Lipton and Sepp (2011)
and references therein. In contrast to reduced-form models (see, e.g., Bielecki and
Rutkowski 2004) structural default models suffer from the curse of dimensionality
when the number of counterparties grows; however, these models provide a more
detailed and financially meaningful description of the default event for a typical firm.

Inspired by Webber and Willison (2011), in Itkin and Lipton (2014) we extended
the structural default framework by taking into account the fact that banks have mutual
liabilities to each other. Taking this effect into consideration is very important in order
to accurately analyze credit worthiness of individual banks and the banking network
as a whole. For instance, large mutual liabilities imply that adverse shock to a bank is
rapidly transmitted to the entire system,with severe implications for its stability (David
and Lehar 2014). The authors of David and Lehar (2014) indicate that renegotiations
between highly interconnected banks facilitate mutual private sector bailouts to lower
the need for government bailouts. The relative size of mutual liabilities compared to
total liabilities is quite significant. For instance, the relative fraction of interbank loans
is 12% in the EU, 8.5% for Canada (David and Lehar 2014), and 4.5% for US (as per
Economic Research website of the Federal Reserve Bank of St. Louis).

An extended Merton model with mutual liabilities and continuous default moni-
toring can be built by combining correlated Merton balance sheet models calibrated
by using observed bank equity returns, and analyzing potential clearing of interbank
liabilities in the spirit of Eisenberg and Noe (2001). In Itkin and Lipton (2014) we
assumed that banks’ assets are driven by correlated Lévy processes with idiosyncratic
and common components and developed a novel method for solving the corresponding
partial pseudo differential equation, which made the problem of computing joint and
marginal survival probabilities computationally tractable. We discussed the impact of
mutual liabilities on the system as a whole, and gave numerical examples illustrating
its importance.

Obviously, the knowledge of the joint and marginal survival probabilities is impor-
tant for successful calibration of the model to the prices of credit default swaps (CDSs)
and first-to-default swaps (FTD). Since the general case is fairly complicated, here we
restrict ourselves to the special case when banks’ assets are driven by the correlated
N -dimensional Wiener process with drift. Then in the 2D case we obtain explicit
expressions for several quantities of interest including the joint and marginal survival
probabilities as well as CDSs and FTD prices. Despite the fact that the model under
consideration does not incorporate jumps, it is still interesting, especially because
it can be solved analytically; in addition, it provides a natural link to the analytical
framework considered in Lipton and Sepp (2011), Lipton and Savescu (2014).

The rest of the paper is organized as follows. In Sect. 2 we propose a model for
the general case of N banks. In Sects. 3 and 4 we present the governing equations
and describe Green’s function based approach for calculating the joint and marginal
survival probabilities for two banks with mutual obligations. In Sects. 5 and 6 we
calculate the prices of CDS and FTD contracts, and present results of our numeri-
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Structural default model with mutual obligations 17

cal experiments. We also validate our results by comparing analytical solutions with
numerical solutions obtained by using a finite difference algorithm described in Itkin
and Lipton (2014). In Sect. 7 we discuss the calibration of the model and present some
additional numerical results. Sect. 8 concludes.

2 The model

Consider a set of N banks with external assets and liabilities, which are denoted by
Ai , Li , i = 1, . . . , N , and interbank assets and liabilities which are denoted by L ji ,
j = 1, . . . , N . In other words, Li j is the amount which the i-th bank owes to the j-th
bank, etc. Thus, total assets, liabilities and capital of the i-th bank have the form

˜Ai = Ai +
∑

j �=i

L ji , ˜Li = Li +
∑

j �=i

Li j , Ci = ˜Ai − ˜Li = Ai − λ=
i ,

where
λ=

i = Li +
∑

j �=i

(

L ji − Li j
)

. (1)

For simplicity, we assume that the corresponding dynamics are governed by the
SDEs of the form

d Ai,t = r Ai,t dt + σi Ai,t dWi,t ,

d Li,t = r Li,t dt, d Li j,t = r Li j,t dt, (2)

subject to the initial conditions Ai,0 = Ai (0), Li,0 = Li (0), Li j,0 = Li j (0), so
that Li,t , Li j,t are deterministic functions of the time t .1 In Eq. (2) r is the risk-free
rate, σi is the volatility of the i-th asset (which is assumed to be constant), and Wi,t

are components of the N -dimensional Wiener process with the correlation matrix ρi j .
These assumptions can be generalized in a variety of ways, which will be discussed
elsewhere.

We assume that all the liabilities (both external and interbank) are settled at a
certain maturity T > 0. Thus, the i-th bank defaults at t = T if ˜Ai,T < ˜Li (T ), or,
equivalently, if Ai,T < λ=

i (T ). Below we denote the default time of the i th bank by
τi .
The k-th bank defaults at τk < T We describe defaults at intermediate times 0 < τi <

T in the spirit of Black and Cox (1976) by assuming that the i-th bank defaults at time
τi provided that

Ai (τi ) ≤ λ<
i (τi ) ≡ Ri

⎡

⎣Li (τi ) +
∑

j �=i

Li j (τi )

⎤

⎦−
∑

j �=i

L ji (τi ), (3)

1 Accordingly, further we will denote them as Li (t), Li j (t).
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18 A. Itkin, A. Lipton

where 0 ≤ Ri ≤ 1 is the recovery rate for 0 < t < T , which is assumed to be
constant. We emphasize that in this setup the default boundary is discontinuous at
t = T , because Ri experiences a jump at this point from its value Ri at t < T to 1 at
t = T (and so λ<

i transforms to λ=
i ).

These default boundaries are valid provided that no other bank defaults before
t = T . If we assume that the k-th bank is the first to default at time τk < T , then
we are left with a set of N − 1 surviving banks. At the default time τk the assets and
liabilities of the i-th bank, i �= k, assume the form

˜Ai (τk) = Ai (τk) +
∑

j �=i, j �=k

L ji (τk) + Rk Lki (τk),

˜Li (τk) = Li (τk) +
∑

j �=i, j �=k

Li j (τk) + Lik(τk).

We assume that for surviving banks mutual liabilities stay the same, while their
external liabilities jump according to the rule

Li (τk) → L̄i (τk) ≡ Li (τk) + Lii (τk) − Rk Lki (τk).

Surviving banks’ capital naturally takes a hit

Ci (τk) → C̄i (τk) ≡ Ci (τk) − (1 − Rk)Lki (τk).

Thus, eachdefault reduces the set of survivingbanks andmodifies the corresponding
default boundaries as follows:

λ̃ik(t) =
{

λ<
ik(t), t < T,

λ=
ik(T ), t = T,

i �= k

λ<
ik(t) = Ri [Li (t) + Lik(t) − Rk Lki (t)] +

∑

j �=i, j �=k

[

Ri Li j (t) − L ji (t)
]

,

λ=
ik(T ) = Li (t) + Lik(t) − Rk Lki (t) +

∑

j �=i, j �=k

[

Li j (t) − L ji (t)
]

. (4)

As an example, consider N = 2. Assume that the k-th bank defaults first, k ∈ [1, 2].
Then for the remaining bank k̄ ≡ 3 − k, the default boundary is given by Itkin and
Lipton (2014)2

λ̃k̄(t) =
{

Rk̄

(

Lk̄ + Lk̄k − Rk Lkk̄

)

, τk ≤ t < T,

Lk̄ + Lk̄k − Rk Lkk̄, τk < t = T .
(5)

2 In this case we omit the second index of λik as the defaulted bank is determined uniquely.
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Structural default model with mutual obligations 19
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Fig. 1 Default boundaries of two banks with and without mutual liabilities at t < T

It is clear that

Δλk̄ = λ̃k̄ − λk̄ =
{

(

1 − Rk̄ Rk
)

Lkk̄ ≡ Δλ<

k̄
, τk ≤ t < T,

(1 − Rk) Lkk̄ ≡ Δλ=̄
k
, t = T,

and Δλk̄ ≥ 0.
To make these definitions more transparent the corresponding boundaries are rep-

resented in Fig. 1. Here, if there are no defaults, we have a rectangular computational
domain which lies above the piece-wise constant line 5–3–4. If the bank 2 defaults,
this domain transforms to that which lies to the right of the line 5–3–7–8. If the bank
1 defaults, the domain transforms to that which lies above the line 1–2–3–4.

The i-th bank defaults at τi = T In this case the definition of λ̃i in Eq. (5) should
be changed. Indeed, if assets of the i-th bank breach below its liabilities at some
time before maturity, the bank has some period of time to recover, unless it breaches
below the level λ̃<

i . At this level the bank’s counterparties don’t believe anymore in its
ability to recover, and it defaults. Obviously, at t = T the bank doesn’t have time to
recover. Therefore, at the most it can pay to its obligors the current amount of money
in hands, i.e. the total value of the bank assets3 which is a fraction γi , 0 < γi ≤ 1,

3 We consider an idealistic situation when all bank’s assets upon default can be immediately converted to
cash with no delay and further losses.
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20 A. Itkin, A. Lipton

of its liabilities. Accordingly, in the spirit of Eisenberg and Noe (2001), to determine
default boundaries we need to find the vector γ = {γi }, 0 ≤ γi ≤ 1, i ∈ [1, N ]
which solves the following piece-wise linear problem in the unit cube:

min

⎧

⎨

⎩

Ai (T ) +
∑

j �=i

γ j L ji (T ), Li (T )+
∑

i �= j

Li j (T )

⎫

⎬

⎭

= γi

⎛

⎝Li (T ) +
∑

j �=i

Li j (T )

⎞

⎠ .

(6)
Introducing new non-dimensional variables ai = Ai (T )/L̃i (T ), l j i = L ji (T )/

L̃i (T ) the problem given in Eq. (6) can be re-written in the form

min

⎧

⎨

⎩

ai +
∑

j �=i

γ j l j i , 1

⎫

⎬

⎭

= γi . (7)

It is clear that γi = 1 (so that the i-th bank survives) if ai +∑ j �=i γ j l j i ≥ 1. And
γi < 1 otherwise, so that the i-th bank defaults. This description suggests that defaults
in the interlinked set of banks can happen outright, when

Ai (T ) < λ=
i (T ) ,

and through contagion, when

Li (T ) +
∑

j �=i

[

Li j (T ) − γ j L ji (T )
]

> Ai (T ) ≥ λ=
i (T ) .

Eq. (7) can be uniquely solved. A brief discussion is given in Appendix 1.
Accordingly, in this case we change the definition of λ=

i (T ) at τi = T to

λ̃i,T = Li (T ) +
∑

i �= j

Li j (T ) −
∑

j �=i

R̃ j,T (γ )L ji (T ) (8)

where

R̃ j,T (γ ) = min

[

1,
A j (T ) +∑i �= j γi Li j (T )

L j (T ) +∑i �= j γi L ji (T )

]

, γ = [γ1, . . . , γN ]. (9)

It follows that the default boundary λ̃i,T piece-wise linearly depends on all
A j (T ), j ∈ [1, N ], j �= i . In particular, let N = 2 and τ2 = T , hence when
A2(T ) = 0 we have from Eq. (8)

λ̃1,T = �
L2 + L21

, � = L1L2 + L12L2 + L1L21.

Therefore,

λ̃=
1

∣

∣

∣

τ2<T
− λ̃1,T = L21(R̃2,T (1) − R2) = L21

(

L12

L2 + L21
− R2

)

.
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Structural default model with mutual obligations 21
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Fig. 2 Default boundaries of two banks with and without mutual liabilities at t = T . The dot pattern marks
the whole computational domain D

This behavior is illustrated in Fig. 2. Since τ j = T , and, thus, R j = 1, from Eq. (5)
we have λ̃=

i = λ=
i , or Δλi = 0. Therefore, when A2(T ) grows from 0 to λ=

2 , the

default boundary λ1,T moves from
�

L2 + L21
to λ=

1 along the line 8–9–6.

At point 6 the default boundary λ̃1,T transforms to λ̃=
1 = λ=

1 , and, further, doesn’t
depend on A2(T ) when the latter increases. This occurs at the point A=

2 (T ) = λ=
2 .

Thus, the whole default boundary of the first bank in Fig. 2 can be seen as a line passing
through the points 8–9–6–5. Similarly, for the second bank the default boundary in
Fig. 2 can be seen as a line passing through the points 1–2–6–4.

Also in Fig. 2, D12 is the domain where both banks don’t default, D1 where the
second bank defaults while the first one does not, andD2 where the first bank defaults
while the first one does not;D is the whole computational domain marked by the dot
pattern, and in the domain D = D\D12 both banks default.

As always, it is useful to describe the evolution of the set of banks under consid-
eration in terms of non-dimensional variables. To this end, we introduce the average

volatility ω ≡
(

∏N
i−1 σi

)1/N
, and define

t̄ = ω2t, T̄ = ω2T, Xi,t̄ = ω

σi
ln

(

Ai,t̄

λ<
i (t̄)

)

, ξi = −1

2

σi

ω
.

The corresponding dynamics of X̄i,t̄ is governed by the SDE:

d X̄i,t̄ = ξi d t̄ + dWi,t̄ , (10)
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22 A. Itkin, A. Lipton

while the default conditions now transform to Xi ≤ μi , with μi defined as

μi
(

t̄
) =

⎧

⎪

⎨

⎪

⎩

μ<
i ≡ 0, t̄ < T̄ ,

μ=
i ≡ ω

σi
ln

(

λ=
i (t̄)

λ<
i (t̄)

)

, t̄ = T̄ .
(11)

By definition, μ=
i > 0.

Below we omit bars for the sake of simplicity.
If the j-th bank defaults at τ j < T , then for the i-th bank the default boundary is

given by

μ̃i j (t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

μ̃<
i j ≡ ω

σi
ln

(

λ̃<
i j (t)

λ<
i j (t)

)

, t < T,

μ̃=
i j ≡ ω

σi
ln

(

λ̃=
i j (t)

λ<
i j (t)

)

, t = T .

(12)

Note, that according to Eq. (2) μ̃<
i j doesn’t depend on t .

It can be seen that the boundary condition in Eq. (12) at t = T doesn’t match to
the terminal condition which, according to Eq. (8), reads

μ̃i j,T = ω

σi
ln

(

λ̃i j (T )

λ<
i j (T )

)

�= μ̃=
i j (T ). (13)

Mathematically, this means that our problem belongs to the class of problems with
a boundary (transition) layer at t = T . Financially, the behavior of the solution in
this layer is determined by the detailed specification of the contract. For instance, if
the bank is close to maturity, say a day before, the recovery rate could be defined to
smoothly transit from Ri to 1 within this last day. Or, some other conditions specific
to the contract in question could be issued. However, we don’t consider these details,
assuming that the boundary layer is thin, and, therefore, any perturbation of the solution
due to the existence of this layer, is dumped out pretty fast when moving away from
this layer. In other words, as we ignore a detailed consideration of the boundary layer,
our solution experiences a jump at t = T . Therefore, after the closed form solution
is found we will compare it with the numerical solution of this problem to reveal
sensitivity of the former to the value of the described effect.

Below we provide all the results just for two-dimensional case N = 2 while the
multi-dimensional case will be presented elsewhere. Accordingly, in the definition of
μ̃=

i j , μ̃<
i j for easiness of reading we will omit the second index as in this case it doesn’t

cause any confusion.

3 Governing equations

Based on the analysis presented in the previous section, the joint survival probability
Q (t, X1, X2) of two assets X1, X2 is defined in the domain Ω(t, X1, X2) : [0, T ] ×
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Structural default model with mutual obligations 23

[0,∞] × [0,∞].4 It solves the following terminal boundary value problem (Lipton
and Sepp 2011)

Qt (t, X1, X2) + LQ (t, X1, X2) = 0,

Q (T, X1, X2) = 1X∈D12 , Q (t, 0, X2) = 0, Q (t, X1, 0) = 0, (14)

where

LQ = Δρ Q + ξ · ∇Q,

Δρ ≡ 1

2

∂2

∂ X2
1

+ ρ
∂2

∂ X1∂ X2
+ 1

2

∂2

∂ X2
2

, ξ = (ξ1, ξ2)
T ,

1x is the Heaviside step function defined with the half-maximum convention,5 and
the area D12 is defined in Fig. 2. We emphasize that the domain Di in X variables has
a curvilinear boundary which depends on the value of Aī (T ). Indeed, based on the
definitions in Eqs. (3), (8), (9) and (13), one can find, e.g., for i = 1

μ̃1,T = ω

σ1
ln

[

L1 + L12 − R̃2,T (1)L21

L1 + L12 − L21

]

= ω

σ1
ln

[

1 + L21(1 − R̃2,T (1))

L1 + L12 − L21

]

.

Next we define the corresponding marginal survival probabilities qi (t, X1, X2),
i = 1, 2, which are functions of both X1 and X2, also in the domain Ω(t, X1, X2).
For brevity we provide all definitions and formulae for the first bank ( i = 1) while
for the second one it can be done by analogy. So q1(t, X1, X2) solves the following
terminal boundary value problem:

q1,t (t, X1, X2) + Lq1 (t, X1, X2) = 0,

q1 (T, X1, X2) = 1X∈[D12∪D1],

q1 (t, 0, X2) = 0, q1 (t, X1, 0) ≡ Ξ(t, X1) =
{

χ1,0(t, X1), X1 ≥ μ̃<
1 ,

0, 0 ≤ X1 < μ̃<
1 ,

,

q1 (t, X1, X2 ↑ ∞) = χ1,∞(t, X1), q1 (t, X1 ↑ ∞, X2) = 1. (15)

In Eq. (15) the domain D1 is defined in Fig. 2. Function χ1,0(t, X1) is the 1D
survival probability, which solves the following terminal boundary value problem

∂tχ1,0(t, X1) + L1χ1,0(t, X1) = 0,

χ1,0(T, X1) = 1X1>μ̃=
1
, χ1,0(t, μ̃

<
1 ) = 0, (16)

where

Li = 1

2

∂2

∂ X2
i

+ ξi
∂

∂ Xi
.

4 The space sub-domain of Ω corresponds to the dotted area in Fig. 2.
5 Since the detailed consideration of the transition layer at t = T is omitted, this condition allows getting
the correct value of χ1(T, μ̃=

1 ), see Eq. (22).
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24 A. Itkin, A. Lipton

Accordingly, function χ1,∞(t, X1) is the 1D survival probability, which solves the
following terminal boundary value problem

∂tχ1,∞(t, X1) + L1χ1,∞(t, X1) = 0,

χ1,∞(T, X1) = 1X1>μ=
1
, χ1,∞(t, 0) = 0. (17)

4 Survival probabilities

We solve Eqs. (14) and (15) by introducing the Green’s function G(t, X1, X2|t ′, X ′
1,

X ′
2), where X ′

1, X ′
2 are the initial values of X1, X2 at t = t ′. Below, where it is not

confusing, for brevity we will also use the notation G(t − t ′, X1, X2), thus explicitly
exploiting the fact that for our problem the Green’s function depends only on t − t ′,
and omitting the second pair of arguments. The Green’s function solves the following
initial boundary value problem

Gt (t − t ′, X1, X2) − L†G(t − t ′, X1, X2) = 0,

G(0, X1, X2) = δ(X1 − X ′
1)δ(X2 − X ′

2),

G(t − t ′, 0, X2) = 0, G(t − t ′, X1, 0) = 0, (18)

where L† = Δρ − ξ · ∇. A simple calculation yields

(QG)t + LG Q − QL†G = 0,

or, explicitly,

(QG)t + ∇ ·
⎛

⎜

⎝

1

2

(

Q X1G − QG X1

)− ρQG X2 + ξ1QG
1

2

(

Q X2G − QG X2

)+ ρQ X1G + ξ2QG

⎞

⎟

⎠
= 0.

The Green’s theorem (Kythe 2011) yields

Q
(

t ′, X ′
1, X ′

2

) =
∫ ∞

0
d X1

∫ ∞

0
d X2G

(

T − t ′, X1, X2
)

=
∫∫

(X1,X2)∈D12

G
(

τ ′, X1, X2
)

d X1d X2, (19)

where τ ′ = T − t ′. Similarly,

q1(t
′, X ′

1, X ′
2) =

∫∫

(X1,X2)∈[D12∪D1]
G
(

τ ′, X1, X2
)

d X1d X2

+ 1

2

∫ τ ′

t ′
ds

∞
∫

μ̃<
1

d X1G X2

(

τ ′ − s, X1, 0
)

χ1,0 (s, X1)

−
∞
∫

0

d X1G X2

(

τ ′ − s, X1, 0
)

χ1,∞ (s, X1) (20)
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Structural default model with mutual obligations 25

We start with noting that the 1D Green’s function g1(ϑ, X1), ϑ ≡ t − t ′ at X2(t) ≤
μ<
2 has the form

g1(ϑ, X1) = e−ξ21 ϑ/2+ξ1(X1−X ′
1)√

2πϑ

[

e− (X1−X ′
1)

2

2ϑ − e− (X1+X ′
1−2μ̃<

1 )
2

2ϑ

]

. (21)

Accordingly,

χ1,0(t
′, X ′

1) =
∞
∫

μ̃=
1

e−ξ21 τ ′/2+ξ1(X1−X ′
1)

⎡

⎢

⎣

e− (X1−X ′
1)2

2τ ′
√
2πτ ′ − e− (X1+X ′

1−2μ̃<
1 )2

2τ ′
√
2πτ ′

⎤

⎥

⎦
d X1

=
∞
∫

μ̃=
1

e− (X1−X ′
1−ξ1τ ′)2
2τ ′

√
2πτ ′ d X1 − e−2ξ1(X ′

1−μ̃<
1 )

∞
∫

μ̃=
1

e− (X1+X ′
1−2μ̃<

1 −ξ1τ ′)2
2τ ′

√
2πτ ′ d X1

= N

(

− μ̃=
1 − X ′

1 − ξ1τ
′

√
τ ′

)

− e−2ξ1(X ′
1−μ̃<

1 )N

(

− μ̃=
1 + X ′

1 − 2μ̃<
1 − ξ1τ

′
√

τ ′

)

,

(22)

and

χ1,∞(t ′, X ′
1) = N

(

−μ=
1 − X ′

1 − ξ1τ
′

√
τ ′

)

− e−2ξ1X ′
1 N

(

−μ=
1 + X ′

1 − ξ1τ
′

√
τ ′

)

.

The corresponding 2D Green’s function has the form (see Lipton 2001; Zhou 2001
and references therein)

G(ϑ, X1, X2)

= 2

�ϑρ̄
e
−〈ξ T , θ〉ϑ

2
+〈X−X ′,θ〉− R2 + R′2

2ϑ
∑

n=1

Iνn

(

R R′

ϑ

)

sin (νnφ) sin
(

νnφ′) ,

(23)

where 〈, 〉 denotes the dot product, Ik(x) is the modified Bessel function of the first
kind,

C =
(

1 ρ

ρ 1

)

, C−1 = 1

ρ̄2

(

1 −ρ

−ρ 1,

)

θ = C−1ξ, νn = nπ

�
, ρ̄2 = 1 − ρ2,

� =

⎧

⎪

⎨

⎪

⎩

π + arctan (−ρ̄/ρ) , ρ > 0

π/2, ρ = 0,

arctan (−ρ̄/ρ) , ρ < 0,

R2 = 〈X, C−1X T 〉, R′2 = 〈X ′, C−1X ′T 〉,
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Φ(X1, X2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

π + arctan

(

ρ̄X1

−ρX1 + X2

)

, X2 < ρX1,

π/2, X2 = ρX1,

arctan

(

ρ̄X1

−ρX1 + X2

)

, X2 > ρX1,

φ = Φ(X1, X2), φ′ = Φ(X ′
1, X ′

2), X = (X1, X2).

Accordingly,

G X2(ϑ, X1, 0) = 2

�ϑ X1
e
−〈ξ T , θ〉ϑ

2
+θ1X1−〈X ′,θ〉−

X2
1/ρ̄

2 + R′2

2ϑ

×
∑

n=1

(−1)n+1 νn Iνn

(

X1R′

ρ̄ϑ

)

sin
(

νnφ′) . (24)

Substitution of these formulas into Eqs. (19) and (20) yields semi-analytical expres-
sions for Q and q1. However, from the computational point of view, it is more efficient
to introduce a new function

q̄1(t, X1, X2) = qi (t, X1, X2) − χ1,∞(t, X1).

In contrast to q1(t, X1, X2) this new function solves a problem similar the problem
given in Eq. (15), but with a homogeneous upper boundary condition:

q̄1,t (t, X1, X2) + Lq̄1(t, X1, X2) = 0,

q̄1(t, 0, X2) = q̄1(t, X1, X2 ↑ ∞) = 0,

q̄1(T, X1, X2) = −1X∈D̄, (25)

where D̄ is the area inside the curvilinear triangle with the vertexes in points 6–7–9 in
Fig. 2.

As the equations in Eqs. (15) and (25) differ just by the source term, the Green’s
function of Eq. (25) is also given by Eq. (23). Accordingly, the solution of Eq. (25)
reads

q1(t
′, X ′

1, X ′
2) = χ1,∞(t ′, X ′

1) −
∫∫

(X1,X2)∈D̄
G
(

τ ′, X1, X2
)

d X1d X2

+ 1

2

∫ τ ′

0
ds
∫ ∞

0
G X2(τ

′ − s, X1, 0)
[

Ξ(τ ′ − s, X1) − χ1,∞(τ ′ − s, X1)
]

d X1.

(26)

Another simplification could be made if one wishes to compute the first integral
in Eq. (20). For better accuracy it is reasonable to represent it as a difference of two
integrals. The first one is taken over the positive quadrant (X1, X2) ∈ [0,∞)×[0,∞)
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Table 1 Parameters of the
structural default model

L1,0 L2,0 L12,0 L21,0 R1 R2 T σ1 σ2 ρ

60 70 10 15 0.4 0.45 1 1 1 0.5

Fig. 3 The marginal survival probability q1(X1, X2) computed by using a Hundsdorfer–Verwer scheme

while the second integral is defined in a union of two semi-infinite strips:D1∪D2∪D.
The idea is that the second integral is defined in the area which is finite either in one or
the other direction, and the first integral could be represented in closed form. Therefore,
the total computational error is less. We underline that, to the best of our knowledge,
representation of the first integral in closed form was not yet given in the literature, so
we present this derivation in Appendix 2.

4.1 Numerical experiments

In our test examples we solved Eq. (15) by using first a finite difference scheme (FD)
and then compared it with the analytical solution given by Eq. (26). Since Eq. (15)
is a pure convection–diffusion two-dimensional problem, we solved it numerically
by using a Hundsdorfer–Verwer scheme, see Hout (2010). A non-uniform finite-
difference grid was constructed similar to Itkin and Carr (2011) with the grid nodes
concentrated close to μ̃=

i , i = 1, 2. We solved the problem using parameters given in
Table 16:

We computed all tests using a 100× 100 spatial grid. Also we used a constant step
in time Δτ = 0.01, so that the total number of time steps for a given maturity is 100.
The marginal survival probability q1(X1, X2) at t = 0 computed by using this method
is presented in Fig. 3.

It is easy to see that for our chosen parameters μ̃<
1 = 0.6659, μ̃<

2 = 0.2548, μ=
1 =

1.4424, μ=
2 = 0.9764, μ̃=

1 = 1.5821, μ̃=
2 = 1.0534.

6 In our setting the value of the interest rate r doesn’t matter.
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Fig. 4 The difference between marginal survival probabilities q1(X1, X2) computed with and without
mutual obligations using the FD method

To observe the effect of the mutual liabilities we repeated this test, but with zero
mutual liabilities. Therefore, as compared with the previous case, now the total assets
of the i-th bank are Ai +∑ j Li j while its liabilities are Li +∑ j L ji . But to provide
a correct comparison we need to keep the asset values Ai constant. Therefore, in this
case we re-adjust liabilities to Li +∑ j L ji −∑ j Li j . In words, this means that, if
∑

j Li j is positive, the bank i gets extra cash and then spends it retiring some of its
external liabilities. If this amount is negative, then it is borrowed from the external
sources. After this adjustment is done we set L21 = L12 = 0 in our calculations. In
what follows, we call this procedure an Adjustment Procedure (AP).

The difference of two solutions is presented in Fig. 4. The above plot clearly demon-
strates a significant difference in the solution in the area close to X1 = μ=

1 , X2 = μ=
2 ,

i.e. the effect of the mutual liabilities is pronounced in this area.
Next we want to compare the analytical and FD solutions. Since the integrands

in Eq. (26) are highly oscillating functions, to get a reasonable accuracy we used a
Gauss–Kronrod algorithm in both directions. Figure 5 demonstrates the difference in
these solutions when there are no mutual obligations. Both solutions coincide pretty
well. However, whenmutual obligations are taken into account the difference increases
as it can be seen in Fig. 6. The difference is bigger in the area closer to X1 = μ=

1 .
Performance-wise, computation of the marginal probabilities on this spatial grid

using the FD scheme takes 21s for T = 1year. At the same time, computation of a
single point on a grid using our analytical methods takes 0.4–0.6 s.7 Therefore, if the
marginal probabilities should be computed at every node of the FD grid, using the
analytical method it would take about 4000s, which is pretty slow. However, when
calibrating the model with unknown volatilities and the correlation coefficient, we
need functions at only three quotes that could be taken from the market values of

7 We ran this test in Matlab on a standard PC with Intel Xeon E5620 2.4Ghz CPU.
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Fig. 5 The difference between marginal survival probabilities q1(X1, X2) computed by the analytical and
FD methods with no mutual obligations

Fig. 6 The difference between marginal survival probabilities q1(X1, X2) computed by the analytical and
FD methods with mutual obligations, T = 5years

the CDS spreads and First-To-Default swaps spreads. Thus, in our simplistic model
we need just three points, which takes about 1.2 s to compute using our analytics.
In contrast, the FD scheme cannot be reduced just to three points on the grid, and,
therefore, for such kind of calibration is much less efficient than the analytical method.
This is the reason we propose the approach of this paper for doing fast calibration of
the model.

In a more general setting, e.g., the one proposed in Itkin and Lipton (2014), this
simplified approach could be used to produce a “smart” initial guess for the parameters
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of the marginal distributions. Then, using this guess, the whole rather complicated
problem could be calibrated much faster than starting with some arbitrary values of
the parameters, since in this case only relatively small increments of the initial guess
should be found.

5 Pricing CDS contracts

We now describe how to price CDSs and FTD in our setting.

5.1 CDS

The price of a CDS C1(t, X1, X2)
8 written on the first bank solves the following

problem (Bielecki and Rutkowski 2004):

C1,t (t, X1, X2) + LC1(t, X1, X2) = ς1,

C1(t, X1, 0) = Ψ (t, X1) =
{

c1,0(t, X1), X1 > μ̃<
1

1 − R1, X1 ≤ μ̃<
1

,

C1(t, 0, X2) = 1 − R1, C1(t, X1, X2 ↑ ∞) = c1,∞(t, X1), (27)

where ςi is the coupon rate, c1,0(t, X1) is the solution of the one-dimensional terminal
boundary value problem

∂t c1,0(t, X1) + L1c1,0(t, X1) = ς1,

c1,0(t, μ̃
<
1 ) = 1 − R1, c1,0(t,∞) = −ς1(T − t),

c1,0(T, X1) = (1 − R1)1μ̃<
1 ≤X1≤μ̃=

1
, (28)

and c1,∞(t, X1) is the solution of another one-dimensional terminal boundary value
problem

∂t c1,∞(t, X1) + L1c1,∞(t, X1) = ς1,

c1,∞(t, 0) = 1 − R1, c1,∞(t,∞) = −ς1(T − t),

c1,∞(T, X1) = (1 − R1)1X1≤μ=
1
. (29)

Also, the statement of problem given in Eq. (27) must be supplied with the terminal
condition C1(T, X1, X2), which could be provided based on the picture presented in
Fig. 2. Omitting some intermediate algebra, we obtain the following condition

C1(T, X1, X2) = α11(X1,X2)∈[D̂∪D2]

α1(X1, X2) =
{

1 − min[R̃1,T (1), R1], (X1, X2) ∈ D2

1 − min[R̃1,T (γ2), R1], (X1, X2) ∈ D̂.

8 For C2(t, X1, X2) similar expressions could be provided by analogy.
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The value of the components γi at (X1, X2) ∈ D̂ are determined by solving the
detailed balance equations which follow from the general N -dimensional problem
given in Eq. (6)

A1 + γ2L21 = γ1 (L1 + L12) ,

A2 + γ1L12 = γ2 (L2 + L21) .

The solution in the original variables reads

γi = Lī Ai + Lī,i (Ai + Aī )

� , i = 1, 2.

Observe that the Green’s function for Eq. (29) is that given by Eq. (21). Therefore,

c1,0(t
′, X ′

1) =(1−R1)

∫ μ̃=
1

μ̃<
1

g1(τ
′, X1)d X1+ 1 − R1

2

∫ τ ′

0

∂g1(τ ′ − s, X1)

∂ X1

∣

∣

∣

∣

X1=μ̃<
1

ds

− ς1

∫ τ ′

0

∫ ∞

μ̃<
1

g1(τ
′ − s, X1)d X1ds ≡ I1 + I2 + I3. (30)

All these integrals can be computed in closed form. Omitting some intermediate
algebra we provide just the final results:

I1 = (1 − R1)

{

e−2ξ1(X ′
1−μ̃<

1 )
[

N (−y−) − N (−2y− − z)
]+ N (y+) − N (z)

}

,

I2 = (1 − R1)
[

e−2ξ1(X ′
1−μ̃<

1 )N (y−) + N (−y+)
]

,

I3 = −ς1τ
′
[

1 − y+
ξ1

√
τ ′ N (−y+) − e−2ξ1(X ′

1−μ̃<
1 ) y−

ξ1
√

τ ′ N (y−)

]

,

y± = ±(X ′
1 − μ̃<

1 ) + ξ1τ
′

√
τ ′ , z = X ′

1 − μ̃=
1 + τ ′ξ1√
τ ′ . (31)

By analogy

c1,∞(t ′, X ′
1) =(1 − R1)

∫ μ=
1

0
ḡ1(τ

′, X1)d X1+ 1−R1

2

∫ τ ′

0

∂ ḡ1(τ ′ − s, X1)

∂ X1

∣

∣

∣

∣

X1=0

ds

− ς1

∫ τ ′

0

∫ ∞

0
ḡ1(τ

′ − s, X1)d X1ds, (32)

where ḡ1(τ ′, X1) can be obtained from g1(τ ′, X1) by setting in Eq. (21) μ̃<
1 = 0.

Accordingly, these integrals in closed form are given by Eq. (31) with μ̃<
1 = 0 and

μ̃=
1 = μ=

1 .
Using the same trick as in the previous section when we computed the marginal sur-

vival probability q1(t, X1, X2), the final solution of this problem could be represented
as follows:
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C1(t
′, X ′

1, X ′
2) = c1,∞(t ′, X ′

1) +
∫ ∞

0

∫ ∞

0
φ(X1, X2)G

(

τ ′, X1, X2
)

d X1d X2

+ 1

2

∫ τ ′

0
ds
∫ ∞

0
G X2(τ

′ − s, X1, 0)
[

Ψ (τ ′ − s, X1) − c1,∞(τ ′ − s, X1)
]

d X1,

φ(X1, X2) ≡ α11(X1,X2)∈[D̂∪D2] − (1 − R1)1X1<μ=
1
, (33)

where the Green’s function G
(

τ ′, X1, X2
)

is given in Eq. (23).

5.2 Numerical experiments

It is well-known in a theory of heat conduction that a direct implementation of Eq. (33)
is still impractical. The reason is that at X ′

2 = 0 the first integral in Eq. (33) vanishes,
so the second one must converge to c1,0(t ′, X ′

1) − c1,∞(t ′, X ′
1) to provide the correct

boundary condition at X ′
2 = 0. However, as it could be checked, at X ′

2 = 0 we have
G X2(τ

′ − s, X1, 0) = 0, and, hence, the formal validation of Eq. (20) fails at the
boundary. As it is explained, e.g. in Kartashov (2001), the reason is that the series in
the second integral in Eq. (33) is not uniformly convergent at X ′

2 = 0, so the transition
to the limit X ′

2 → 0 using this representation is complicated and impractical from the
computational point of view.

This problem, however, can be overcome by applying another elegant trick that we
describe in more detail in Appendix 3.

Further on, we ran the same test as in the previous section with parameters of the
model given in Table 1, and ς1 = 0.02. We used the same FD method to verify our
solution, see the previous section for the description of the method. The CDS prices
for t = 0 are presented in Fig. 7.

Again, to observe the effect of mutual liabilities we perform an equivalent com-
putation, but with zero mutual liabilities and the AP applied. The difference of two
solutions is presented in Fig. 8. As one would expect, our results demonstrate a signif-
icant difference in the area close to X1 = μ=

1 , X2 = μ=
2 , i.e. the effect of the mutual

liabilities is pronounced in this area not only for the marginal survival probabilities,
but for CDS prices as well.

6 Pricing first-to-default (FTD) contracts

The price of the FTD F1,t solves the following terminal boundary value problem9:

F1,t + L1F1 = ς1,

F1(t, 0, X2) = 1 − R1, F1(t, X1, 0) = 1 − R2.

F1(t, X1, X2 ↑ ∞) = f1,∞(t, X1), F1(t, X1 ↑ ∞, X2) = f2,∞(t, X2),

F1(T, X1, X2) = β01(X1,X2)∈D̂ + β11(X1,X2)∈D1 + β21(X1,X2)∈D2 . (34)

9 For F2,t this can be done by analogy.
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Fig. 7 CDS prices C1(X1, X2) computed by using a Hundsdorfer–Verwer scheme

Fig. 8 The difference in CDS prices C1(X1, X2) computed with and without mutual obligations using the
FD method

Here fi,∞(t, Xi ), i = 1, 2 is the solution of the one-dimensional terminal boundary
value problem

∂t fi,∞(t, Xi ) + Li fi,∞(t, Xi ) = ςi ,

fi,∞(t, 0) = 1 − Ri , fi,∞(t,∞) = −ςi (T − t),

fi,∞(T, Xi ) = (1 − Ri )1Xi ≤μ=
i
. (35)

As it could be seen, f1,∞(t, X1) = c1,∞(t, X1) given in Eq. (32). Also βi =
βi (X1, X2) in Eq. (34) is defined as
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βi = 1 − min[R̃ī,T (1), Rī ], (X1, X2) ∈ Di , i = 1, 2,

β0 = 1 − min[min[R̃2,T (γ1), R2],min[R̃1,T (γ2), R1]], (X1, X2) ∈ D̂.

Similar to the previous section, it can be shown that the solution of this problem
reads

F1(t
′, X ′

1, X ′
2) =

∫ ∞

0

∫ ∞

0
β11(X1,X2)∈[D̂∪D2]G

(

τ ′, X1, X2
)

d X1d X2

− ς1

∫ τ ′

0

∫ ∞

0
ḡ1(τ

′ − s, X1)d X1ds

+ 1

2
(1 − R2)

∫ τ ′

0
ds
∫ ∞

0
G X2(τ

′ − s, X1, 0)d X1

+ 1

2
(1 − R1)

∫ τ ′

0
ds
∫ ∞

0
G X1(τ

′ − s, 0, X2)d X2, (36)

where the Green’s function G
(

τ ′, X1, X2
)

again is given in Eq. (23).

6.1 Numerical experiments

For the same reason as before a direct implementation of Eq. (36) is impractical
from the computational point of view. However, again a similar trick can be applied
to significantly improve the accuracy in computation of the boundary integrals. We
describe it in more detail in Appendix 4.

Again we ran the same test as in the previous section with parameters of the model
given in Table 1, and the same ς1 = 0.02. We used the same FD method to verify our
solution, see the previous section for the description of the method. The FTD prices
are shown in Fig. 9.

In order to understand the effect of themutual liabilities on FTD prices, we repeated
this test, but with zero mutual liabilities and the AP applied. The difference of two
solutions is presented in Fig. 10. The same picture can be obtained by using our
analytical approach.

As in the previous cases mutual obligations significantly influence FTD prices
especially in the area close to X1 = μ=

1 , X2 = μ=
2 .

Wealso present the difference in theCDSandFTDprices for thefirst bank computed
with and without mutual obligations and maturity T = 5years. These results are given
in Figs. 11 and 12. It is seen that with the increase of maturity the effect of the mutual
obligations decreases and in the limit of very long maturities almost disappears.

To illustrate how the terminal distribution of prices looks like in some partic-
ular example (which was schematically given in Fig. 2) in Fig. 13 the difference
F1(T, X1, X2) − C1(T, X1, X2) is presented as a function of (X1, X2). Obviously,
F1(T, X1, X2) is positive in D2 while C1(T, X1, X2) vanishes there (the red box in
the right bottom corner of the Figure). And they also differ in a part of the domain
D̃ (the left bottom corner). In other points of the computational domain the values of
F1(T, X1, X2) and C1(T, X1, X2) coincide with each other.
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Fig. 9 FTD prices F1(X1, X2) computed by using a Hundsdorfer–Verwer scheme

Fig. 10 The difference in FTD prices F1(X1, X2) computed without and with mutual obligations using
the FD method

7 Calibration

The model described in Sect. 3 has three unknown parameters: σ1, σ2, ρ. We use CDS
prices for two assets and the FTD price for both assets to calibrate these parameters.
The calibration is done in Matlab using a simple non-linear least square approach
where every given point (quote) is taken with the same weight.

In a test experiment we use all the parameters as in Table 1 and also use A1,0 =
300, A2,0 = 300, ς1 = ς2 = 0.05. Then we calibrate σ1, σ2, ρ in the following way.
First, we set σ1 = 0.3, σ2 = 0.4, ρ = 0.5 and compute the prices of CDS and FTD
using our algorithm. This gives us the quotesC1 = 0.05, C2 = 0.0583, F1 = 0.0583.
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Fig. 11 The difference in CDS prices C1(X1, X2) computed with and without mutual obligations, T =
5years

Fig. 12 The difference in FTD prices C1(X1, X2) computed without and with mutual obligations, T =
5years

Then we run the calibrator to make sure it converges to the same values of σ1, σ2, ρ

to validate self-consistence of our approach.
Finally, since we investigate how strong the effect of mutual obligations on the

parameters of the model is, in the second test we ignore mutual obligations and apply
our AP as was discussed in the previous sections. The results of such a calibration are
presented in Table 2.

A typical time necessary to get the values of the parameters in Matlab is about
10 s with the objective function tolerance set to 10−4. The corresponding time if the
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Fig. 13 The difference F1(T, X1, X2) − C1(T, X1, X2), T = 1year (Color figure online)

Table 2 Results of calibration

Test T = 1year T = 5years

σ1 σ2 ρ σ1 σ2 ρ

MO 0.300 0.400 0.500 0.300 0.400 0.500

NMO 0.2819 0.4421 0.4936 0.3189 0.4234 0.2942

Dif (%) 6.0372 −10.5373 1.2801 −6.3108 −5.8616 41.1670

FD algorithm is used with the grid 70 × 70 points in space and time step 0.03 is
about 12 times slower. Certainly, for longer maturities this difference increases. The
results for T = 5years are also presented in Table 2. Here the computed quotes are
C1 = 0.2579, C2 = 0.3182, F1 = 0.336. As can be seen, accounting for the mutual
obligations significantly affects the values of the calibrated parameters.

8 Conclusion

In this paper we consider interlinkage (mutual obligations) of banks and their influence
onmarginal survival probabilities as well as CDS and FTD prices of the corresponding
names.We use a simplemodel where banks’ assets are driven by the correlated Brown-
ian motions with drift. The choice of the model is dictated by the advantage to get all
the results in closed form, at least in the 2D case. A more sophisticated model with
assets driven by some general correlated Lévy processes has been already considered
in Itkin and Lipton (2014). However, the present description is more transparent and
allows one to better understand the nature of the effect, and also adds CDS and FTD
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prices to the picture. In the 2D case we also calibrated this model to some artificial
market quotes and showed that the mutual obligations must be taken into account
to get the correct values of the model parameters as they significantly influence the
results of calibration. To the best of our knowledge these results are new.

Another less important, but perhaps interesting, result is a closed form solution for
the marginal survival probabilities for two assets driven by the correlated Brownian
motions with drift. This solution was not yet given in the literature, so we present it
in this paper. To understand a financial meaning of this solution, we underline that
for big banks, due to various regulators requirements, their assets cannot drop down
much below their liabilities, which means that their recovery rates R should be almost
1 (or, possibly, even exceed 1). In this case when computing, e.g., marginal survival
probabilities, the domain D12 in Fig. 2 becomes a positive octant.

Acknowledgements We thank Darrel Duffie, Dilip Madan, Tore Opsahl and Trina Bills for useful com-
ments. We assume full responsibility for any remaining errors.

Appendix 1: Solution of Eq. (7)

We need to prove that Eq. (7) has a unique solution. The below discussion is an
alternative to the solution of this problem given by Eisenberg and Noe (2001).

First, consider two extreme cases. If no banks default, then ai + ∑ j �=i γ j l j i ≥
1, ∀i ∈ [1, N ]. Obviously, the solution of Eq. (7) is γi = 1, ∀i ∈ [1, N ].

If all banks default, then Eq. (7) transforms to the form

F(γ ) = γ ,

where F(γ ) denotes the lhs of Eq. (7). This is a fixed point problem10 that can be
solved by the fixed point iterations method. A sufficient condition for local linear
convergence of fixed point iterations is that the Jacobian J (F(γ )) has to obey the
condition

|J (F(γ ))| < 1. (37)

To prove this in our case, represent the Jacobian in the explicit form

J (F(γ )) =

∣

∣

∣

∣

∣

∣

∣

∣

0 l21 l31 . . . lN1
l12 0 l32 . . . lN2
. . . . . . . . . . . . . . . . . .

l1N l2N l3N . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

=
(

N
∏

k=1

L̃k

)−1

∣

∣

∣

∣

∣

∣

∣

∣

0 L21 L31 . . . L N1
L12 0 L32 . . . L N2
. . . . . . . . . . . . . . . . . . . . .

L1N L2N L3N . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

By definition for any matrix |M | = ||mi j ||, i, j ∈ [1, N ]

det (|M |) =
∑

χ∈SN

sgn(χ)

N
∏

i=1

mi,χi ,

10 This actually is a linear system of equations. However, we want to solve it using a fixed-point iterations
method to later apply this technique to the general Eq. (7).
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where the sum is computed over all permutations χ of the set SN = [1, 2, . . . , N ],
see Bellman (1960). Since all Li j ≥ 0 we have

J (F(γ )) <

⎡

⎣

∑

χ∈SN

N
∏

i=1

Li,χi

⎤

⎦

[

N
∏

k=1

L̃k

]−1

. (38)

Now observe that the numerator in Eq. (38) is a sum of the products of the N
elements, and each such a product (1) is positive, and (2) has its vis-à-vis in the
denominator. However, the denominator contains also some additional positive terms,
for instance

∏N
i=1 Li , and therefore, J (F(γ )) < 1.

As an example, when N = 2

|J (F(γ ))| = L21

L1 + L12

L12

L2 + L21
< 1.

Thus, we proved that the condition Eq. (37) is always satisfied. Therefore, by the
Banach fixed-point theorem (Granas and Dugundji 2003) the map F(γ ) → γ is a
contraction mapping on γ , and this implies the existence and uniqueness of the fixed
point since a unit cube where γ is defined is a compact metric space.

These two extreme cases naturally give rise to the idea of how to solve Eq. (7) in
general by using a fixed-point iteration method. Given the vector γ from the previous
iteration, we check the condition ai +∑ j �=i γ j l j i < 1 for all i ∈ [1, N ]. If for some
i = k this condition is not satisfied, we put γk = 1 and exclude the equation for
γk from Eq. (7). Otherwise, this equation remains in the system. After this step is
completed, and for instance, M out of N variables γ were set to 1, we solve Eq. (7)
for the remaining N − M variables. The uniqueness of the solution and convergence
of the fixed-point iterations follow from the above proof.

Appendix 2: Closed form representation of the integral

Due to various regulators requirements, assets of large banks cannot drop below
their liabilities, which means that their recovery rates R should be close to 1. In
this case when computing, e.g., marginal survival probabilities, the domain D12 in
Fig. 2 becomes a positive quadrant. Finding an analytical solution for survival prob-
ability in a positive quadrant with non-zero drift is a long standing problem, that to
the best of the authors’ knowledge was not solved yet. A relevant literature includes
Lipton (2001), Zhou (2001), Metzler (2010), Blanchet-Scalliet and Patras (2008) and
references therein.

From a technical prospective we want to compute the integral

Q1(t
′, X ′

1, X ′
2) =

∫ ∞

0
d X1

∫ ∞

0
d X2G(τ ′, X1, X2) (39)

where the corresponding 2D Green’s function is given by Eq. (23). The closed form
solution for this integral is known when the drift ξ in Eq. (39) vanishes, see Metzler
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(2010) and references therein. However, if ξ �= 0 the closed form solution is not
known yet. Here we derive this representation in the form of series of generalized and
confluent hypergeometric functions.

First, using polar coordinates R, φ we rewrite Eq. (39) in the form

Q1(t
′, R′, φ′) = 2

�ϑ
eκ

∞
∑

n=1

sin
(

νnφ′)

∫ �

0
sin(νnφ)dφ

∫ ∞

0
Reγ (φ)Re−αR2

Iνn (β R)d R (40)

where

κ = −〈ξ T , θ〉ϑ
2

− R′2

2ϑ
− 〈X ′, θ〉, β = R′/ϑ, γ (φ) = (θ2 + ρθ1) sin φ

+ ρ̄θ2 cosφ. α = 1

2ϑ
.

Next, we use theGegenbauer expansion of the complex exponential of two variables
in terms of the ultra-spherical (Gegenbauer) polynomials (Abreu 2008)

eixs = Γ (ν)
( s

2

)−ν
∞
∑

k=0

i k(ν + k)Jν+k(s)C
ν
k (x), (41)

where Cν
k (x) are the Gegenbauer polynomials (Abramowitz and Stegun 1964), and

the parameter ν can be arbitrarily chosen. It can also be seen as a Neumann series
(Watson 1966) of the exponential eixt . By changing variables s = i S in Eq. (41) the
latter can be transformed to

e−Sx = Γ (ν)

(

S

2

)−ν ∞
∑

k=0

(−1)k(ν + k)Iν+k(S)Cν
k (x). (42)

Substitution of this representation with S = β R and x = −γ (φ)/β into Eq. (40)
yields

Q1(t
′, R′, φ′) = 2

�ϑ
eκΓ (ν)

(

β

2

)−ν ∞
∑

n=1

∞
∑

μ=0

(−1)μ(ν + μ) sin
(

νnφ′)

×
∫ �

0
sin(νnφ)Cν

μ(−γ (φ)/β)dφ

∫ ∞

0
R1−νe−αR2

Iνn (β R)Iν+μ(β R)d R. (43)

For the sake of simplicity, it does make sense to choose ν = 1, and then use the
identity (Gradshtein and Ryzhik 2007)
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∫ ∞

0
e−αR2

Iνn (β R)Iμ(β R)d R = 2−νn−μ−1α−(νn+μ+1)/2βνn+μ Γ [(1 + μ + νn)/2]
Γ (μ + 1)Γ (νn + 1)

× 3F3

⎡

⎣

νn +μ+1

2

νn +μ+2

2

νn +μ + 1

2
μ+1 νn + 1 μ + νn + 1

; β2

α

⎤

⎦,

(44)

where 3F3(a1, a2, a3; b1, b2, b3; z) is a generalized hypergeometric function (Askey
and Daalhuis 2010).

Further, observe that at ν = 1 the Gegenbauer polynomials become the Chebyshev
polynomials of the second kind which admit the representation (Abramowitz and
Stegun 1964)

Un(x) =
[n/2]
∑

k=0

(−1)kCn−k
k (2x)n−2k,

where [x] is the floor function. Therefore, the first integral in Eq. (43) assumes the
form

I1 =
[μ/2]
∑

k=0

2μ−2k(−1)kCμ−k
k

∫ �

0
sin(νnφ)(θ̄1 sin φ + θ̄2 cosφ)μ−2kdφ, (45)

with

θ̄1 = θ2 + ρθ1

β
,

ρ̄θ2

β
,

and Cμ−k
k be the binomial coefficient.

The integral in the rhs of Eq. (45) can be taken in closed form and reads
∫ �

0
sin(νnφ)(θ̄1 sin φ + θ̄2 cosφ)μ−2kdφ

= ω22k−μ−1

ω2(μ − 2k)2 − π2n2

{

a1 [b1F1(n) + b2F1(−n)]

+ a2 [b1F2(n) + b2F2(−n)]

}

F1(n) = 2F1

(

2k − μ, k + 1

2

(πn

ω
− μ

)

, k + 1

2

(πn

ω
− μ

)

+ 1,−1 + 2θ̄1
θ̄1 − i θ̄2

)

,

F2(n) = 2F1

(

2k − μ, k + 1

2

(πn

ω
− μ

)

, k + 1

2

(πn

ω
− μ

)

+ 1,
e2iω(θ̄1 + i θ̄2)

θ̄1 − i θ̄2

)

,

a1 = −θ̄
μ−2k
2

(

− i θ̄2
θ̄1 − i θ̄2

)2k−μ

, a2 = e−iπn
(

sinω − i cosω

θ̄1 − i θ̄2

)2k−μ

,

bi = (−1)i−1ω(μ − 2k) + πn, i = 1, 2, (46)
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where 2F1(a, b, c, x) is confluent hypergeometric function (Abramowitz and Stegun
1964).

Although in Eq. (46) the integral is represented as a function of a complex argument,
it could be shown that it is real. For example,

∫ �

0
sin(νnφ)(θ̄1 sin φ + θ̄2 cosφ)dφ = πnω

ω2 − π2n2

[

(−1)n(θ̄1 sin(ω)

+θ̄2 cos(ω)) − θ̄2
]

∫ �

0
sin(νnφ)(θ̄1 sin φ + θ̄2 cosφ)2dφ = 1

2π3n3 − 8πnω2

{

− 4ω3(θ21 + θ22 )

+ 2π2θ22 n2ω + (−1)nω
[

π2n2
((

θ21 − θ22

)

cos(2ω) − 2θ1θ2 sin(2ω)
)

−
(

θ21 + θ22

) (

π2n2 − 4ω2
)]

}

,

etc.

Appendix 3: Computationally efficient representation of Eq. (33)

First, let us mention that the problem given in Eq. (27) is defined in the semi-infinite
domain X1 ∈ [0,∞), X2 ∈ [0,∞). However, for practical purposes, this infinite
domain is always truncated by some reasonably large value Mi , i = 1, 2. Thus, we
consider Eq. (27) with X2 ∈ [0, M2]. Strictly speaking, this truncation will change the
Green’s function representation (Polyanin 2002), however the error should be small
when X ′

2 → ∞, or in other words, it is within the truncation error of changing the
upper boundary from ∞ to M2.

To exactly match the boundary conditions in Eq. (27), we replace C1(t, X, X2)with
a new function

C̃1(t, X, X2) = C1(t, X, X2) − X2

M2
c1,∞(t, X1) −

(

1 − X2

M2

)

Ψ (t, X1). (47)

Function C̃1(t, X, X2) solves the following problem:

C̃1,t (t, X1, X2) + LC̃1(t, X1, X2) = Ξ(t, X1, X2),

C̃1(t, X1, 0) = C̃1(t, 0, X2) = C̃1(t, X1, M2) = C̃1(t,∞, X2) = 0,

C̃1(T, X1, X2) = α11(X1,X2)∈[D̂∪D2] − X2

M
(1 − R1)1X1≤μ=

1

−
(

1 − X2

M

)

(1 − R1)1X1≤μ̃=
1
. (48)
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The solution of this problem is given by the formula (Polyanin 2002)

C̃1(t
′, X ′

1, X ′
2) =

∫ ∞

0
d X1

∫ ∞

0
d X2C̃1(τ

′, X1, X2)G(τ ′, X1, X2)

+
∫ τ ′

0
ds
∫ ∞

0
d X1

∫ ∞

0
d X2Ξ(τ ′ − s, X1, X2)G(τ ′ − s, X1, X2).

(49)

At X2 → 0 and X2 → ∞ due to the boundary conditions for C1(t, X1, X2)

the new function C̃1(t, X1, X2) vanishes. Also, according to the boundary conditions
c1,∞(t, X1) → −ς1(T − t) at X1 → ∞ as well as c1,0(t, X1), and C1(t, X1, X2).
Therefore, in this limit, C̃1(t, X1, X2) vanishes as well. Finally, at X1 = 0 we
have c1,∞(t, 0) = c1,0(t, 0) = C1(t, X1, X2) = 1 − R1. Therefore, in this limit,
C̃1(t, X1, X2) = 0. Thus, function C̃1(t, X1, X2) satisfies the homogeneous bound-
ary conditions.

Now, let us give an exact representation ofΞ(t, X1, X2).We need to apply the oper-
ator ∂t +L to both parts of Eq. (47) and take into account Eq. (27) for C1(t, X1, X2).
Omitting a tedious algebra we obtain

Ξ(t, X1, X2) =
4
∑

i=1

ai (t, X1, X2),

a1(t, X1, X2) = δ(X1 − μ̃<
1 )ã1(t, X2), ã1(t, X2)

= ∂c1,0(t, X1)

∂ X1

∣

∣

∣

X1=μ̃<
1

X2 − M2

M2

≡ d1(t)X2 + d2(t),

a2(t, X1, X2) = δ′(X1 − μ̃<
1 )ã2(t, X1, X2), ã2(t, X1, X2)

= [c1,0(t, X1) − c1,0(t, μ̃
<
1 )
] X2 − M2

2M2
,

a3(t, X1, X2) = 1X1>μ̃<
1

ã3(t, X1, X2), ã3(t, X1, X2)

= 1

M2

[

ξ2(t)
(

c1,0(t, X1) − c1,0(t, μ̃
<
1 )
)

+ (X2 − M2)
(

ς1 − ∂t c1,0(t, μ̃
<
1 )
)+ ρ∂t c1,0(t, X1)

]

≡ X2b1(t, X1) + b2(t, X1),

a4(t, X1, X2) = ã4(t, X1) = −ς1 + 1

M2

[

ξ2(t)
(

c1,∞(t, X1) − c1,0(t, μ̃
<
1 )
)

+ ρ
(

∂t c1,0(t, X1) − ∂t c1,∞(t, X1)
)

]

. (50)

Further, denote

Ji =
∫ τ ′

0
ds
∫ ∞

0
d X1

∫ ∞

0
d X2ai (τ

′ − s, X1, X2)G(τ ′ − s, X1, X2).
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By using Eqs. (49) and (50) we obtain
∫ τ ′

0
ds
∫ ∞

0
d X1

∫ ∞

0
d X2Ξ(τ ′ − s, X1, X2)G(τ ′ − s, X1, X2) =

4
∑

i=1

Ji ,

J1 =
∫ τ ′

0
ds
∫ ∞

0
ã1(τ

′ − s, X1, X2)G(τ ′ − s, μ̃<
1 , X2)d X2

=
∫ τ ′

0
ds
[

d2(τ
′ − s)Y1(τ

′ − s, μ̃<
1 ) + d1(τ

′ − s)Y2(τ
′ − s, μ̃<

1 )
]

,

J2 =
∫ τ ′

0
ds
∫ ∞

0
ã1(τ

′ − s, μ̃<
1 , X1, X2)G X1(τ

′ − s, μ̃<
1 , X2)d X2

=
∫ τ ′

0
ds
[

d2(τ
′ − s)Z1(τ

′ − s, μ̃<
1 ) + d1(τ

′ − s)Z2(τ
′ − s, μ̃<

1 )
]

,

J3 =
∫ τ ′

0
ds
∫ ∞

μ̃<
1

d X1

∫ ∞

0
d X2ã3(τ

′ − s, X1, X2)G(τ ′ − s, X1, X2)

=
∫ τ ′

0
ds
[

∫ ∞

μ̃<
1

d X1b2(τ
′ − s, X1)Y1(τ

′ − s, X1)

+
∫ ∞

μ̃<
1

d X1b1(τ
′ − s, X1)Y2(τ

′ − s, X1)
]

,

J4 =
∫ τ ′

0
ds
∫ ∞

0
d X1ã3(τ

′ − s, X1)Y1(τ
′ − s, X1),

where

Y1(t, X1) =
∫ ∞

0
G(t, X1, X2)d X2, Y2(t, X1) =

∫ ∞

0
X2G(t, X1, X2)d X2,

Z1(t, X1) =
∫ ∞

0
G X1(t, X1, X2)d X2, Z2(t, X1) =

∫ ∞

0
X2G X1(t, X1, X2)d X2.

Also we emphasize that a pretty similar approach can be used for computing mar-
ginal probabilities.

Appendix 4: Computationally efficient representation of Eq. (36)

Byusing a similar idea as in the previousAppendixwe first truncate the infinite domain
(X1, X2) ∈ [0,∞) × [0,∞) to a finite domain (X1, X2) ∈ [0, M1] × [0, M2] and
introduce a new function

F̃1(t, X, X2) = F1(t, X, X2) − h(t, X1, X2)h(t, X1, X2)

=
{[

X2

M2
f1,∞(t, X1) +

(

1 − X2

M2

)

(1 − R2)

]

1X1 + (1 − R1)
(

1 − 1X1

)

}

1M1−X1 − f2,∞(t, X2)
[

1 − 1M1−X1

]

. (51)
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Function F̃1(t, X, X2) solves the following problem:

F̃1,t (t, X1, X2) + LF̃1(t, X1, X2) = Υ (t, X1, X2),

F̃1(t, X1, 0) = F̃1(t, 0, X2) = F̃1(t, X1, M2) = F̃1(t, M1, X2) = 0,

F̃1(T, X1, X2) = F1(T, X1, X2) − h(T, X1, X2), (52)

and fi,∞(T, Xi ) = (1 − Ri )1Xi ≤μ=
i
.

The solution of this problem is given by the formula (Polyanin 2002)

F̃1(t
′, X ′

1, X ′
2) =

∫ ∞

0
d X1

∫ ∞

0
d X2 F̃1(τ

′, X1, X2)G(τ ′, X1, X2)

+
∫ τ ′

0
ds
∫ ∞

0
d X1

∫ ∞

0
d X2Υ (τ ′ − s, X1, X2)G(τ ′ − s, X1, X2).

(53)

In order to computeΥ (t, X1, X2), apply the operator ∂t +L to both parts of Eq. (51)
and take into account Eq. (34) for F1(t, X1, X2). Omitting a tedious algebra we obtain

Υ (t, X1, X2) = −2ς1 + 1

2

[−1 + R1 + f2,∞(t, X2)
]

δ′
X1

(M1 − X1)

− δ′
X1

(0)

M2

[

M2(R1 − R2) − y(1 − R2 + f1,∞(t, X1))
]

+ δ(X1)b1(t, X1, X2) + δ(M1 − X1)b2(t, X1, X2), (54)

where bi (t, X1, X2) are some functions. We omit the explicit form of these functions
since the integrals

∫ ∞

0
δ(X1)G(τ ′ − s, X1, X2)b1(t, X1, X2)d X1 = 0,

∫ ∞

0
δ(M1 − X1)G(τ ′ − s, X1, X2)b2(t, X1, X2) = 0,

due to the boundary conditions for the Green’s function. Therefore, the final represen-
tation for the boundary integral in Eq. (53) reads

∫ τ ′

0
ds
∫ ∞

0
d X1

∫ ∞

0
d X2Υ (τ ′ − s, X1, X2)G(τ ′ − s, X1, X2) = K1 + K2 + K3,

K1 = −2ς1

∫ τ ′

0
ds
∫ ∞

0
d X1Y1(τ

′ − s, X1),

K2 = 1

2

∫ τ ′

0
ds
∫ ∞

0

[− f2,∞(t, X2) + R1 − 1
]

G X1(τ
′ − s, M1, X2)d X2,

K3 =
∫ τ ′

0

[

(R1 − R2)Z1(τ
′ − s, 0) + R1 + R2 − 2

M2
Z2(τ

′ − s, 0)

]

ds.
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46 A. Itkin, A. Lipton

At numerical (discrete) realization all Ki , i ∈ [1, 3] vanish at the boundaries as well
as the first integral in Eq. (53), and so does F̃1(t, X1, X2). Therefore, by definition of
F̃1(t, X1, X2) this preserves the correct boundary conditions for F1(t, X1, X2).
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