
F

A
a

b

a

A
R
R
A
A

K
L
P
L
A

o
s
o
s
d
w
w

l
v
s
e
f
f
a
o
L
t
o
u
a
o
t

s

h
1

Journal of Computational Science 24 (2018) 195–208

Contents lists available at ScienceDirect

Journal  of  Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

illing  the  gaps  smoothly

ndrey  Itkina,∗,  Alexander  Liptonb

Tandon School of Engineering, New York University, 12 Metro Tech Center, RH 517E, Brooklyn NY 11201, USA
Massachusetts Institute of Technology, Connection Science, USA

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 21 November 2016
eceived in revised form 6 February 2017
ccepted 8 February 2017

a  b  s  t  r  a  c  t

The  calibration  of  a  local volatility  models  to a  given  set of option  prices  is  a classical  problem  of math-
ematical  finance.  It was  considered  in multiple  papers  where  various  solutions  were  proposed.  In this
paper  an extension  of the  approach  proposed  in  Lipton,  Sepp 2011  is  developed  by (i)  replacing  a  piece-
wise  constant  local  variance  construction  with  a piecewise  linear  one,  and (ii) allowing  non-zero  interest
vailable online 20 February 2017

eywords:
ocal volatility surface
iecewise linear variance
aplace transform

rates  and  dividend  yields.  Our  approach  remains  analytically  tractable;  it  combines  the  Laplace  transform
in time  with  an  analytical  solution  of the  resulting  spatial  equations  in  terms  of Kummer’s  degenerate
hypergeometric  functions.

©  2017  Elsevier  B.V.  All  rights  reserved.
rbitrage-free interpolation

The local volatility model introduced by [8,7] is a classical model
f mathematical finance. The calibration of the local volatility (LV)
urface to the market data, representing either prices of European
ptions or the corresponding implied volatilities for a given set of
trikes and maturities, drew a lot of attention over the past two
ecades. Various approaches to solving this important problem
ere proposed, see, e.g., [3,19,13] and references therein. Below,
e refer to [19] as LS2011 for the sake of brevity.1

There are two main approaches to solving the calibration prob-
em. The first approach attempts to construct a continuous implied
olatility (IV) surface matching the market quotes by using either
ome parametric or non-parametric regression, and then gen-
rates the corresponding LV surface via the well-known Dupire
ormula, see, e.g., [13] and references therein. To be practically use-
ul, this construction should guarantee no arbitrage for all strikes
nd maturities, which is a serious challenge for any model based
n interpolation. If the no-arbitrage condition is satisfied, then the
V surface can be calculated using (2) below, which is equivalent
o, but more convenient than, the original Dupire formula. The sec-
nd approach relies on the direct solution of the Dupire equation
sing either analytical or numerical methods. The advantage of this

pproach is that it guarantees no-arbitrage. However, the problem
f the direct solution can be ill-posed, [4], and is rather computa-
ionally expensive.

∗ Corresponding author.
E-mail address: itkin@chem.ucla.edu (A. Itkin).

1 We emphasize that the solution proposed in [3] is static in nature, while the
olution developed in LS2011 is fully dynamic.

ttps://doi.org/10.1016/j.jocs.2017.02.003
877-7503/© 2017 Elsevier B.V. All rights reserved.
An additional difficulty with both approaches is that the calibra-
tion algorithm has to be fast in order to be practically useful. On the
one hand, analytical or numerical solutions of the Dupire equation
are naturally numerically expensive. On the other hand, building a
no-arbitrage IV surface could also be surprisingly numerically chal-
lenging, because it requires solving a rather involved constrained
optimization problem, see [13]. An additional complication arises
from the fact that in the wings the implied variance surface should
be at most linear in the normalized strike [15].

In this paper we  extend the approach proposed in LS2011, which
is based on the direct solution of the transformed Dupire equation.
In LS2011 a piecewise constant LV surface is chosen, and an efficient
semi-analytical method for calibrating this surface to the sparse
market data is proposed. However, one can argue that ideally the
LV function should be continuous in the log-strike space. Below we
demonstrate how to extend LS2011 approach by assuming that the
local variance is piecewise linear in the log-strike space, so that the
corresponding LV surface is continuous in the strike direction (but
not in the time direction). While derivatives of the LV function with
respect to strike have discontinuities, the option prices, deltas and
gammas are continuous. This is to compare with LS2011 where the
option prices and deltas are continuous while the option gammas
are discontinuous. We also allow for non-zero interest rates and
proportional dividends.

The rest of the paper is organized as follows. Section 1 introduces
the Dupire equation and discusses a general approach to construct-

ing the LV surface. Section 2 considers all necessary steps for solving
the Dupire equation. Section 3 introduces a no-arbitrage interpola-
tion of the source term, which naturally appears when the Laplace

https://doi.org/10.1016/j.jocs.2017.02.003
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2017.02.003&domain=pdf
mailto:itkin@chem.ucla.edu
https://doi.org/10.1016/j.jocs.2017.02.003
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ransform in time is used, and shows that using this interpolation
ll the integrals containing this source term can be obtained in a
losed form. Section 4 considers a special case when the slope of the
ocal variance on some interval is small, so the linear local variance
unction on this interval becomes flat. Section 5 discusses various
symptotic results which are useful for constructing the general
olution of the Dupire equation. Section 6 is devoted to the cali-
ration of the model and also describes how to get an educated

nitial guess for the optimizer. Since computing the inverse Laplace
ransform could be expensive for small time intervals, Section 7
escribes an asymptotic solution obtained in this limit in [11] and
hows how to use it for our purposes. Section 8 describes numerical
esults for a particular set of market data. The final section con-
ludes. Some additional proofs and derivations are given in two
ppendices.

. Local volatility surface

As a general building block for constructing the local volatility
urface we consider Dupire’s (forward) equation for the Put option
rice P which is a function of the strike price K and the time to matu-
ity T [8]. We assume that the underlying stock process St under
he risk neutral measure is governed by the following stochastic
ifferential equation

St = (r − q)Stdt + �(St, t)StdWt, S0 = S,

here r ≥ 0 is a constant risk free rate, q ≥ 0 is a constant continuous
ividend yield, � is a given local volatility function, and Wt is the
tandard Brownian motion. The Dupire equation for the Put P(K, T)
eads [9]

T (K, T) =
{

1
2

�2(K, T)K2 ∂2

∂K2
− (r − q)K

∂
K

− q

}
P(K, T), (1)

K, T) ∈ (0,  ∞)  × [0,  ∞),

ubject to the initial and boundary conditions

P(K, 0) = (K − S0)+,

P(0, T) = 0, P(K, T)K↑∞ = KD, D = e−rT ,

here S0 = St|t=0, and D is the discount factor.
If the market quotes for P(K, T) are known for all K, T, then the LV

unction �(K, T) can be uniquely determined everywhere by invert-
ng (1).2 However, in practice, the known set of market quotes is a
iscrete set of pairs (Ki, Tj), i = 1, . . .,  nj, j = 1, . . .,  M,  where nj is the
otal number of known quotes for the maturity Tj, which obviously
oes not cover all K, T. So the form of �(K, T) remains unknown.

In order to address this issue, it is customary to choose a func-
ional form of �(K, T) for the corresponding time slice. For instance,
n LS2011 �(K, T) is assumed to be a piecewise constant function of
, T. The authors propose a general methodology of solving (1) for
heir chosen explicit form of �(K, T) by using the Carson–Laplace
ransform in time and Green’s function method in space. This opens
he door for using a version of the least-square method for the cali-
ration routine. Of course, by construction, it makes the whole local
olatility surface discontinuous at the boundaries of the tiles, and

at in the wings. While the former feature, in itself, is not neces-
arily an issue, but should be avoided if possible, the latter feature
s somewhat more troubling, since, it is shown in [6,12], that the
symptotic behavior of the local variance is linear in the log strike

2 If the Call option market prices are given for some strikes and maturities, we
an  use Call-Put parity in order to convert them to Put prices, since for calibration
e  usually use vanilla European option prices.
ional Science 24 (2018) 195–208

at both K → ∞ and K → 0. While the result for K → 0 is shown to be
true at least for the Heston and Stein–Stein models, the result for
K → ∞ directly follows from Lee’s moment formula for the implied
variance vI , [15], and the representation of �2 via the total implied
variance w = vIT [17,10]

wL ≡ �2(T, K)T = T∂T w(
1 − X∂X w

2w

)2
− (∂X w)2

4

(
1
w + 1

4

)
+ ∂2

X w
2

, (2)

where w = w(X, T), X = log K/F and F = Se(r−q)T is the stock forward
price. Therefore, having a flat local volatility deep in the wings
should be avoided if possible.

That is why, in this paper, we  consider a continuous, piecewise
linear local variance v = �2(X, T) in the spatial variable X for a fixed
T = const. This allows us to match the asymptotic behavior of v in the
wings as well as build the whole surface which is much smoother
than in the piecewise constant case. Also, in LS2011 the interest
rates and dividends are assumed to be zero, while here we take
them into account.

2. Solution of Dupire’s equation

Introducing a new dependent variable

B(X, T) = e−X/2(KD − P(X, T))/Q, Q = Se−qT ,

which is a scaled covered Put, the problem in (1) can be re-written
as follows

BT − 1
2

vBXX + 1
8

vB = 0, B(X, 0) = K − (K − S)+

S
e−X/2

= e−X/21X>0 + eX/21X≤0, B(X, T)X↓−∞ = 0, B(X, T)X↑∞ = 0,

(X, T) ∈ (−∞, ∞)  × [0,  ∞). (3)

A similar transformation is used in [18] in order to solve the
backward Black–Scholes equation. Suppose that there are option
price quotes (at least for one strike) for M different maturities T1, . . .,
TM.3 Also suppose that for each Tj the market quotes are provided
at Xi, i = 1, . . .,  nj.4 Then the corresponding continuous piecewise
linear local variance function vj(X)5 on the interval [Xi, Xi+1] reads

vj,i(X) = v0
j,i + v1

j,iX, (4)

where we use the super-index 0 to denote a level v0, and the super-
index 1 to denote a slope v1. Subindex i = 0 in v0

j,0, v1
j,0 corresponds

to the interval (−∞, X1]. Since vj(X) is continuous, we have

v0
j,i + v1

j,iXi+1 = v0
j,i+1 + v1

j,i+1Xi+1, i = 0, . . .,  nj − 1. (5)

The first derivative of vj(X) experiences a jump at the points Xi, i ∈
Z ∩ [1,  nj].

Further, assume that v(X, T) is a piecewise constant function of
time, i.e. v0

j,i
, v1

j,i
do not depend on T on the intervals [Tj, Tj+1), j ∈ [0,

M − 1], and jump to new values at the points Tj, j ∈ Z ∩ [1,  M]. In
the original independent variables K, T this condition implies that

v(Ki, T) ≡ vj,i = v0
j,i + v1

j,i

[
log(Ki/S)  − (r − q)T

]
, T ∈ [Tj, Tj+1),
i.e. that the local variance is a (discontinuous) piecewise linear func-
tion of time T. In other words, in the original log-variables (log K, T)
the function v(log K, T) is piecewise linear in both variables, while

3 We assume the maturities are sorted in the increasing order.
4 The strikes also are assumed to be sorted in the increasing order.
5 Here in the notation we  drop off the dependence of v on T since T is given, and

hopefully it does not bring any confusion.
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Thus, we  have to put C2 = 0 in (9) on the very first interval (−∞,
X1] to preserve the boundary conditions at X → −∞.  However, the
A. Itkin, A. Lipton / Journal of Com

n the transformed variables (X, T) the function v(X, T) is piecewise
inear in X and piecewise constant in T. Thus, X can be viewed as an
utomodel variable.6

With the above assumptions in mind, (3) can be solved by induc-
ion. One starts with T0 = 0, and on each time interval [Tj−1, Tj], j ∈

 ∩ [1,  m]  solves the modified problem for Bj(X, �)

Bj,�(X, �) − 1
2

vj(X)Bj,XX (X, �) + 1
8

vj(X)Bj(X, �) = 0,

B1(X, 0) = B(X, 0),  Bj(X, 0) = Bj−1(X, �j−1), j > 1

B(X, �)X→±∞ = 0, (X, �) ∈ (−∞, ∞)  × [0,  �j], (6)

here � is a continuous time T counted from Tj−1, so �j ≡ Tj − Tj−1,
nd Bj is the solution of (3) corresponding to the time interval Tj−1 ≤

 ≤ Tj, j ∈ Z ∩ [1,  m].
To solve (6), similarly to LS2011, we use the Laplace-Carson

ransform B̂ = L(p){B} of (6) (for application of the Laplace trans-
orm to derivatives pricing, see [17]) to obtain

1
2

vj(X)B̂j,XX +
(

vj(X)
8

+ p

)
B̂j = pBj−1(X, �j−1), (7)

ˆ(X, p)X↑±∞ = 0.

Since v(X) is a piecewise linear function, the solution of (7) can
lso be constructed separately for each interval [Xi−1, Xi]. By taking
nto account the explicit representation of v(X) in (4), from (7) for
he ith spatial interval we obtain

b2 + a2X)B̂j,XX + (b0 + a0X)B̂j = pBj−1(X, �j−1), (8)

2 = −v0
j,i/2, a2 = −v1

j,i/2, b0 = p + v0
j,i/8, a0 = v1

j,i/8.

8) is an inhomogeneous Laplace equation, [23], p. 155. It is well
nown that if y1 = y1(X), y2 = y2(X) are two fundamental solutions of
he corresponding homogeneous equation, then the general solution
f (8) can be represented as

ˆ j(p) = C1y1 + C2y2 + pI12 (9)

12 = y2

∫
y1Bj−1(X, �j−1)
(b2 + a2X)W

dX − y1

∫
y2Bj−1(X, �j−1)
(b2 + a2X)W

dX,

here W = y1(y2)X − y2(y1)X is the so-called Wronskian corre-
ponding to the chosen solutions y1, y2. Thus, the problem is
educed to finding suitable fundamental solutions of the homoge-
eous Laplace equations. Based on [23], if a2 /= 0 and a0 /= 0, the
eneral solution reads

ˆ j = ekXJ (a, 0, 2k(� − X)) , (10)

 =
√

−a0/a2 = ±1
2

, � = −b2

a2
= −

v0
j,i

v1
j,i

, a = b2k2 + b0

2a2k
.

Here J(a, b, z) is an arbitrary solution of the degenerate hyper-
eometric equation, i.e., Kummer’s function, [1], p. 504 with a, b

eing some constants and z being an independent variable. Two
ypes of Kummer’s functions are known, namely M(a, b, z) and U(a,
, z), which are Kummer’s functions of the first and second kind.7

6 This terminology is borrowed from aerodynamics and physics of gases and flu-
ds.

7 Due to the linearity of the degenerate hypergeometric equation any linear com-
ination of Kummer’s functions also solves this equation.
ional Science 24 (2018) 195–208 197

2.1. Numerically satisfactory solutions

To explicitly represent (9), among all possible fundamental pairs
of the solutions given in (10), for every spatial interval we have to
determine the pair that is numerically satisfactory [22]. Since our
boundary conditions are set at positive and negative infinity, we
need a numerically satisfactory solution for the whole real line.
However, it is well known that a single pair of Kummer’s functions
cannot be numerically satisfactory throughout the whole real line.
To overcome this problem, a combined solution can be constructed;
below we describe our construction in some detail.

As a preliminary notice, observe that based on the definitions in
(10), (8) the variable z can be re-written as z = −2kvj,i/v1

j,i
. Based

on the usual shape of the local variance curve and its positivity,
see, e.g., [13] and references therein, for X → −∞,  we expect that
v1

j,i
< 0. Similarly, for X → ∞ we expect that v1

j,i
> 0. In between

these two  infinite limits the local variance curve for a given matu-
rity Tj is assumed to be continuous, but the slope of the curve
could be both positive and negative. Also vj,i ≥ 0 ∀X ∈ R, and
a = −p/(kv1

j,i
). With these observations in mind, we now present

our methodology.8

2.1.1. v1
j,i

< 0

For every interval where v1
j,i

< 0, i.e. ∀i ∈ Z ∩ [1,  nj] such that
X ∈ [Xi−1, Xi], X0 = −∞, Xi ≤ Xmj

, as the first independent solu-
tion of the Kummer equation we  take Y1(z) = z U(a + 1, 2, z) with
k = 1/2, which means a > 0.9 From the definition of z it follows
that X = � − z/(2k) = � − z. Thus, when X → −∞ we  have z → ∞ and
ek XY1(z) → 0.

This solution is numerically stable across the whole interval
X < Xmj

except the point z = 0, which corresponds to X = �,  or, equiv-

alently, vj,i = 0; this point belongs to our interval if � < Xmj
.10 At

z = 0 the solution has a branch point [22]. The principal branch of
U(a, b, z) corresponds to the principal value of z−a and has a cut in
the z-plane along the interval (−∞, 0]. However, one can observe,
that at z = 0 (8) becomes a degenerated ODE, and its solution imme-
diately reads

B̂j = p
Bj−1(X, �j−1)

b0 + a0X
= Bj−1(X, �j−1). (11)

Therefore, we can exclude this special case from the below con-
sideration, while if this case were to occur during the actual
calibration, we  just use the special solution given by (11) instead
of the general solution.

As the second independent solution of Kummer’s equation for
v1

j,i
< 0 (or X < Xmj

) we have two choices: Y2(z) = zezU(1 − a, 2, − z)
or Y2(z) = z M(a + 1, 2, z). It can be shown that if we take the former
with k = −1/2 (so a < 0 and X = � + z), then two solutions e−X/2Y2(X)
and eX/2Y1(X) differ just by a constant e�, so that they are not inde-
pendent. Therefore, we are compelled to keep k = 1/2, a > 0, and
X = � − z. However, then the function zez+k XU(1 − a, 2, − z) diverges
at both X → −∞ and at z → 0. Similarly, the function z M(a  + 1, 2, z)
also diverges at X → −∞,  but is numerically stable at z → 0.
solution Y2(z) still contributes to I12. In what follows we will use

8 The case where the local volatility is flat on some interval, i.e. a2 = 0, and a → ∞,
is considered in Section 4.

9 Since in our case b = 0, by Kummer’s transformation, [22], p. 254, [1], p. 505, U(a,
0, z) = z U(a + 1, 2, z).

10 As the local variance is linear and non-negative, either this point is at the edge
of  the interval, or the local variance is flat and vanishes on this interval.
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Fig. 1. Construction of the whole solution of the Dupire equation. 1 (red solid line
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2(z) = z M(1 + a, 2, z), and show that I12 converges in the limit
 → − ∞.

For future reference, note that the solutions y1(z) = ek Xz M(a + 1,
, z) and y2 = ek Xz U(a + 1, 2, z) can also be re-written in terms of
hittaker’s functions Mp,s(z), Wp,s(z) [1], p. 504,

1(z) = ek�M−a,1/2(z), y2(z) = ek�W−a,1/2(z).

.1.2. v1
j,i

> 0

For every interval where v1
j,i

> 0, i.e. ∀i ∈ Z ∩ [2,  nj + 1] such
hat X ∈ [Xi−1, Xi], Xnj+1 = ∞,  Xi > Xmj

, as the first independent
olution of Kummer’s equation we again take Y1(z) = z U(a + 1, 2, z)
ith k = −1/2, which means a > 0, and X = � + z. Thus, when X → ∞
e have z → ∞ and ek XY1(z) → 0.

Again, this solution is numerically stable on the whole interval
 > Xmj

except for a singularity at z = 0 (if � > Xmj
). However, the

olution at z = 0 of (8) was already given in the previous subsection.
As far as the second numerically stable solution is concerned,

he analysis of the previous subsection is applicable here as well.
herefore, we also take Y2(z) = z M(1 + a, 2, z) again with k = −1/2, so

 > 0, and X = � + z. Accordingly, in (9) we put C2 = 0 on the very last
nterval [Xnj

, ∞)  to preserve the boundary conditions at X → ∞.

.2. The combined solution across the whole real line

The solutions described in the previous section are schemati-
ally represented in Table 1.

Accordingly, for j > 1 the solution in (9) on the interval i reads

ˆ i = C(1)
1,i

y1,i(z) + C(1)
2,i

y2,i(z) + pI(1)
12,i

(X), (12)

 ≡ W1,i = eXz2W[U(1 + ai, 2, z), M(1 + ai, 2, z)] = − e�i

�(ai + 1)
,

here �(x) is the gamma function, I12,i is I12 defined in (9) and

omputed on the interval i, and the superscript (s) in I(s)
12,i

means
hat y1,i(X), y2,i(X) (the solutions of the homogeneous equation) in
he definition of I12 in (9) are taken on the corresponding area (s).11

For j = 1 the term Bj−1(X, �j−1) should be replaced with eX/2 if X ∈
Xi−1, Xi], X ≤ 0, and with e−X/2 if X ∈ [Xi−1, Xi], X > 0 in the definition
f I12,i.

Also in order to satisfy the boundary conditions, see (7), I12 in (9)
hould vanish when X → ±∞. We  prove this statement in Appendix
.

Using these results, we can now proceed to constructing the
olution of (7) on the whole real line X ∈ [−∞,  ∞]  by matching
olutions on all the intervals.

Suppose that Put prices for T = Tj are known for nj ordered strikes.
lso, first suppose that these quotes are available for both K > F and

 < F. The location of these strikes on the X line is schematically
epicted in Fig. 1.

According to the analysis of Section 2, on the open interval A1 the
olution of (7) is given by the first line of Table 1. It contains one
nknown constant C(1)

1,1 since we put C(1)
2,i

= 0 due to the bound-
ry conditions. The solutions from line 2 in Table 1 should be used
or all other intervals Ak−1,k such that k ≥ 1, v1

j,k
≤ 0. These solu-
ions have two yet unknown constants C(1)
1,k

, C(2)
1,k

, since X is finite
n the corresponding interval, and therefore, both solutions y1(X),
2(X) are well-behaved. For Xk, where v1

j,k
> 0 and k ≤ mj we use

11 We use the notation C(l)
1,i

, C(l)
2,i

for the integration constants, where super index
 ∈ Z ∩ [1,  2] marks the corresponding area in Fig. 1, and the sub index i marks the
nterval in the X space.
–  the real (unknown) local variance curve, 2 (dashed blue line) – a piecewise linear
solution. (For interpretation of the references to color in this legend, the reader is
referred to the web version of the article.)

the solution given in the third line of Table 1, which also has two
yet unknown constants C(2)

1,k
, C(2)

2,k
for each interval. Finally, for the

interval X ∈ [Xnj
, ∞)), we use the solution in the last line of Table 1.

Again, to obey the boundary conditions we must set C(2)
2,nj+1 = 0.

Thus, we  have 2nj unknown constants to be determined. Since
the local volatility function vi is continuous at the points Xi, i = 1,
. . .,  nj, so should be the solution B̂(X, �j). Therefore, we  require that
at the points zi, i = 1, . . .,  nj the solution and its first derivative in
X should be a continuous function of X. Thus, the above constants
solve a system of 2nj algebraic equations. This system has a special
structure that allows one to reduce its LHS matrix to the upper
triangular form (actually even the upper banded form). Therefore,
it can be efficiently solved with the linear complexity O(2nj). For
more details, see LS2011.

When computing the first derivatives, we take into account that

hi,X = y1,X I1(gi(X)) − y2,X I2(gi(X)), i = 1, 2,

and according to [1], p. 507

∂M(a, b, z)
∂z

= a

b
M(a + 1, b + 1, z),

∂U(a, b, z)
∂z

= − aU(a + 1, b + 1, 

Also, in some special cases which are discussed in the following
sections, the solution can be represented in terms of the modi-
fied Bessel functions. But it is known, [1], that the derivatives of
the modified Bessel functions are expressed in closed form via the
same set of functions. Therefore, computing the derivatives of the
solution does not cause any new technical problems.

Note, that in the definition of the integrals I12 in (9), for the
sake of convenience, we define the low limit of integration �(X) as
follows. For the interval A1 we  take � =−∞. Then for each integral
I12(Xi), i = 2, . . .,  nj we use �i = Xi−1 (or zi−1 if the integral is expressed
in z variables, see Appendix). This choice is inspired by the fact that
all the parameters ai, a2,i, b2,i, �i in (9) are constant on the interval
[Xi−1, Xi].

Also repeat that, for the sake of simplicity, in the above construc-
tion we assumed that market quotes are available for a set of strikes
with K < F, as well as for a set of strikes with K > F. However, it could
happen that the market provides just a set of strikes such that all
Xi > 0 or Xi < 0. In this case we can construct the whole solution as
follows.

Suppose Xi < Xmj
, ∀i ∈ Z ∩ [1,  nj]. Introduce an additional

auxiliary point X∗ > Xmj
. Of course, since this is an auxiliary point,

the corresponding market quote is not available. Therefore, we  do

not need to calibrate the local variance at this point. However, intro-
duction of such a point helps to construct the solution on the whole
real line, similarly to how it was  done above. An unknown constant
C(2)

1,∗ again can be found assuming the continuity of the solution at
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Table  1
Our construction of numerically satisfactory Kummer’s pairs. Here “fc” means from continuity.

Interval v1
j,i

k z y1 y2 C2

(−∞, X1] <0 1/2 � − X eX/2z U(a + 1, 2, z) eX/2z M(a + 1, 2, z) 0
X/2 X/2
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(
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[Xi , Xi+1] <0 1/2 � − X 

[Xi , Xi+1] >0 −1/2 X − � 

[Xmj
, ∞)  >0 −1/2 X − � 

he point X*, while C(2)
2,∗ should be set to 0 to preserve the boundary

onditions. Thus, this trick just helps to construct a numerically sta-
le solution across the region (−∞,  X1] with X1 > Xmj

(when there
re no points Xi < Xmj

), or across the region [Xnj
, ∞)  with Xnj

< Xmj

when there are no points Xi > Xmj
).

According to our construction, the options values as well as
ption deltas and gammas are continuous in X (and, therefore, in
). Indeed, in the above we required B̂(X, �j), B̂X (X, �j) and vj to be
ontinuous functions of X. Then, based on (7), B̂XX is also a con-
inuous function of X. Applying the inverse Laplace transform, we
btain that BXX is also continuous in X, and, hence, by the definition

f X, in S. Therefore, by the definition of B, P, ∂P
∂S

, ∂2
P

∂S2 are also con-
inuous. This result demonstrates the additional advantage of our

odel as compared, e.g., with LS2011, where the options gammas
re discontinuous due to only a piecewise continuity of vj .

. Analytical representation of the integrals I12(X)

To compute the RHS term h(X) = pI12(X) at some time step j
e need a function Bj−1(X, �j−1) obtained at the previous time

tep. However, market quotes at Tj and Tj−1 could be given at dif-
erent sets of X even if the strikes are same since, by definition,

 = log(K/F(T)). Therefore, when computing pI12(X) in (9) by using a
umerical quadrature, we need to know the values of Bj−1(X, �j−1)
t points X where they have not been calculated yet. There are at
east two possible approaches to addressing this issue.

The first approach relies on the fact that the solution B̂j−1 is
lready known for each space interval [Xi−1, Xi]. Therefore, to com-
ute Bj−1(X), Xi−1 < X < Xi we can use the inverse Laplace transform
ethod as described below. Also this would require computation

f I12(X, �j−1) since this is a part of the solution for B̂j−1. Thus, this
ethod, despite being exact, is very computationally expensive as

t requires the inverse Laplace transform and numerical integration
mbedded into another inverse Laplace transform and numerical
ntegration.

The second approach, which is advocated in this paper, uses
nterpolation to compute Bj−1(X) given the values of Bj−1(X), where

 = X(Tj−1), and X = X(Tj). In general, linear interpolation would be
ufficient, however, it gives rise to the violation of the no-arbitrage
onditions.

Indeed, according to [5],12 given three Put option prices P(K1),
(K2), P(K3) for three strikes K1 < K2 < K3, the necessary and suffi-
ient conditions for an arbitrage-free system read

(K3) > 0, P(K2) < P(K3), (13)
K3 − K2)P(K1) − (K3 − K1)P(K2) + (K2 − K1)P(K3) > 0.

12 In [5] these conditions are given for Call option prices. In that case the first and
he  third conditions remain the same as in (13) if we replace P(K) with C(K), while
he second condition changes to C(K2) > C(K3).
e z U(a + 1, 2, z) e z M(a + 1, 2, z) fc
e−X/2z U(a + 1, 2, z) e−X/2z M(a + 1, 2, z) fc
e−X/2z U(a + 1, 2, z) e−X/2z M(a + 1, 2, z) 0

Suppose that we  want to use linear interpolation in the strike space
on the interval [K1, K3] to find the unknown Put option price P(K2)
given the values of P(K1), P(K3),

P(K2) ≡ Pl(K2) = P(K1)K3 − P(K3)K1

K3 − K1
+ P(K3) − P(K1)

K3 − K1
K2.

When plugging this expression into the second line of (13), the LHS
of the latter vanishes, so the third no-arbitrage condition is violated.

This problem, however, could be resolved if we  use linear inter-
polation with a modified independent variable,

P(K2) ≡ PF (K2) = P(K1)f (K3) − P(K3)f (K1)
f (K3) − f (K1)

+ P(K3) − P(K1)
f (K3) − f (K1)

f (K2),

(14)

where f(K) is a convex and increasing function in [K1, K3]. Indeed,
if f(K) is convex, then P(K2) = PF(K2) = Pl(K2) − ε, ε > 0 (see Fig. 2).
Substitution of this expression into the second line of (13) gives
(K3 − K1)ε > 0, which is true. The second condition in (13) now reads

(P(K1) − P(K3))(f  (K3) − f (K2))(f  (K1) − f (K3)) > 0,

which is also true since f(K) is an increasing function of K.
Alternatively, one can use non-linear interpolation. In this paper,

for the sake of tractability, we  combine both approaches and pro-
pose the following interpolation scheme

P(K2) ≡ PF (K2)=	1 + 	2K2 log K2, 	1=P3K1 log K1 − P1K3 log K3

K1 log K1 − K3 log K3
,

	2 = P1 − P3

K1 log K1 − K3 log K3
. (15)

Proposition 1. The interpolation scheme in (15) is no-arbitragable.

Proof. Observe, that the no-arbitrage conditions in (13) are dis-
crete versions of the conditions

P > 0, PK > 0, PK,K > 0.

By differentiating the first line of (15) one can check that the pro-
posed interpolation obeys these conditions provided that P is an
increasing function of K given the values of all other parameters to
be constant. For instance, this is the case for the Black–Scholes Puts.

For the sake of illustration, in Fig. 2a we present a compari-
son of the no-arbitrage interpolation PN with its linear counterpart
PL and the exact price PE computed for the Black–Scholes model
(for emphasis, the differences D(PN) = PN − PL, D(PE) = PE − PL are dis-
played). The plot is computed using the following values: S = 100,
K1 = 95, K3 = 100, r = 0.05, q = 0.01, � = 0.5, T = 1. It is clear that the
no-arbitrage conditions are satisfied.
Using the definition of X and B(X, T) and some algebra, the inter-
polation formula in (14) for B(X) can be re-written as

B[X, �] = ˛−
1 e−X/2 + (ˇ+

1 X + ˇ+
2 )eX/2, (16)
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ig. 2. (a): Absolute differences D(P) = P − PL for no-arbitrage non-linear interpolati
(PL) = 0 corresponds to PL . (b): Same for the relative differences of no-arbitrage no

˛−
1 = e(X1+X3)/2

R

[
e(X1+X3)/2(k3 − k1) + eX1/2k1B(X3, T) − eX3/2k3B(X1, T)

]
,

ˇ+
1 = 1

R

[
eX3 − eX1 − eX3/2B(X3, T) + eX1/2B(X1, T)

]
,

ˇ+
2 = 1

R

[(
eX1/2B(X1, T) − eX3/2B(X3, T)

)
log F + eX1 X1 − eX3 X3

]
,

R  = k1eX1 − k3eX3 .

where ki = Xi + log F. In Fig. 2b the relative difference for linear BL

nd non-linear BN interpolations vs. the exact Black–Scholes value
E is shown as a function of X. It can be seen that in this test the
ifference is around 3 bps.

Now the expression given by (16) can be substituted into the
efinition of I12(X) in (9). It turns out that then the corresponding

ntegral can be computed in closed form, see Appendix B.
Sometimes, it could happen that for the new maturity deep out-

f-the-money (OTM) or in-the-money (ITM) strikes are positioned
utside of the region covered by strikes given for the previous matu-
ity. That means, that no-arbitrage interpolation cannot be used in
uch a case, while using (16) for extrapolation will lead to arbitrage.
his issue can be addressed as follows.

Suppose that at Tj the last strike with a known market quote
s Kj,nj

. Suppose that at Tj+1 > Tj we are given a set of new strikes

j+1,1, . . .,  Kj+1,nj+1
, such that Xj+1,l > Xj,nj

, ∀l : nj+1 ≤ l ≤ i, where
 is some integer i ∈ Z ∩ [1,  nj+1]. Now introduce an auxiliary point
j,*, such that Xj,∗ > Xj+1,nj+1 and Xj,* <∞. Based on the boundary
onditions we can assume that B(X*, Tj) = 0. Then, having this extra
uxiliary point, the problem of extrapolation reduces to interpola-
ion which was discussed above. A similar approach can be used
t the opposite end when Xj+1,l < Xj,1, ∀l ∈ Z ∩ [1,  i] for some

 > 0. Then the auxiliary point Xj,* should be inserted on the interval
 ∞ < Xj,* < Xj+1,1.

Solution for the first term T1 For the first term T1 we do not
eed interpolation since we know the solution B(X, 0) along the

hole real line X ∈ (−∞,  ∞).  It is given by the terminal condi-

ion in (3) and fits into our interpolation formula in (16) if we set
−
1 = p1X>0 and ˇ+

1 = 0, ˇ+
2 = p1X≤0. Thus, in this case the analyti-

al solution for I12(X) is still available, see Appendix B.
 and the exact Black–Scholes Put prices PE , with the linear interpolation PL . The line
ar BN and linear BL interpolations with the exact Black–Scholes Put prices BE .

4. Small |v1
j,i

|

When calibrating the model to the market data, it could hap-
pen that some values of v1

j,i
become small, so that |v1

j,i
Xi|  1.13 In

this case, the solutions considered in Section 2 are no longer valid.
Therefore, we need to consider (8) which can be represented in the
form

(1 + 
) B̂j,XX +
(

�2 − 

4

)
B̂j = p

b2
Bj−1(X, �j−1), (17)

where � =
√

b0/b2, and for each interval [Xi−1, Xi], i ∈ Z ∩ [2,  nj]
the parameter 
 is defined as


 = v1
j,iXi/v0

j,i.

If |
i|  1, a general solution of (17) B̂j can be represented as a power
series in 
, i.e.,

B̂j =
∞∑

s=0

B̂(s)
j

(X)
s.

Zeroth-order approximation In zeroth-order approximation
(17) can be written as

B̂(0)
j,XX

+ �2B̂(0)
j

= p

b2
Bj−1(X, �j−1),

So that the corresponding variance is piecewise constant. A general
solution of this equation has the form

B̂(0)
j

= C1y1(X) + C2y2(X) + p

b2
I12(X), (18)

y1 = eı�X, y2 = e−ı�X,

I12 = y2

∫
y1Bj−1(X, �j−1)

W
dX − y1

∫
y2Bj−1(X, �j−1)

W
dX.

Obviously, for these y1, y2 (which are always numerically satis-
factory), we have W[y1, y2] =−2 i �. Again, we use the no-arbitrage
13 The case v1
j,i

= 0 is considered in LS2011, where the integrals I12(X) were com-
puted numerically.
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�(0)(x, �j) = C1�i−1(x)I1(2�i−1(x)) + C2�i−1(x)K1(2�i−1(x)), (23)
A. Itkin, A. Lipton / Journal of Com

nterpolation of the solution obtained at the previous time step to
ompute I12(X) explicitly:

I1(X, �) =
∫

eı�XBj−1(X, �j−1)
dX

W

= − 1
2ı�

∫
eı�X [˛−

1 e−X/2 + (ˇ+
1 X + ˇ+

2 )eX/2]dX

= − 1
2ı�

[
˛−

1
ı−

eı−X + ˇ+
1 (ı+X − 1) + ı+ˇ+

2

ı2+
eı+X

]
,

ı± = ı� ± 1/2,

I2(X) = − 1
2ı�

∫
e−ı�X [˛−

1 e−X/2 + (ˇ+
1 X + ˇ+

2 )eX/2]dX

= 1
2ı�

[
˛−

1
ı+

e−ı+X + ˇ+
1 (ı−X + 1) + ı−ˇ+

2

ı2−
e−ı−X

]
,

I12(X) = e−ı�X I1(X, �) − eı�X I2(X, �) = − 1
ı�

[
A−e−X/2 + A+eX/2

]
,

A− = ˛−
1

(
1

ı+
+ 1

ı−

)
,

A+ = ˇ+
1 (ı−X + 1) + ı−ˇ+

2

ı2−
+ ˇ+

1 (ı+X − 1) + ı+ˇ+
2

ı2+
.

These solutions can be considered as a further improvement of
S2011, since (i) they embed a no-arbitrage interpolation, and (ii)
his interpolation allows computation of the source terms in closed
orm. Obviously, performance-wise such an approach significantly
peeds up the calculations.

First-order approximation In first-order approximation in
  1, (17) has the form

XB̂(1)
j,XX

+ (2 + �2X)B̂(1)
j

= XB(0)(X),

B(0)(X) =
(

�2 + 1
4

)
B̂(0)

j
− p

b2
Bj−1(X, �j−1).

f |X|  1, then

ˆ(1)
j

= X

2
B(0)(X).

therwise, the solution to this equation reads, see [23], p. 155

ˆ(1)
j

= C2 + C1y1(X) + I12(X), (19)

y1 = −�2Ei(−�2X) − e−�2X

X
, W = e−�2X

X2
,

I12 =
∫

y1XB0(X)
W

dX − y1

∫
XB0(X)

W
dX,

here Ei(X) is the exponential integral [1], p. 227. If �2 > 0 then C1
hould be set to zero when X → −∞,  i.e., on the very first interval.
f �2 < 0 C1 should be set to zero when X → ∞,  i.e., on the very last
nterval.

. Large values of the parameter |a|

In many practical situations the parameter |a| in (10) can become
arge. Indeed, it follows from the analysis of Section 2.2 that |ai| =
p/|v1

j,i
|. The values of p we are interested in can be estimated by
aking into account the fact that for computation of the inverse
aplace transform we use the Gaver–Stehfest algorithm described
n Section 6. Then, by virtue of (26), p = s(log2)/�j, where s runs from

 to N = 12. Therefore, for a typical value of �j = 0.1, p changes in the
ional Science 24 (2018) 195–208 201

range from 7 to 83. At the same time, usually |v1
j,i

| = O(0.1), so that
|a| � 1.

From [1,22] we know that for large values of a the value of
U(a + 1, 2, z) is very small, while the value of U(1 − a, 2, − z) is very
big. Therefore, the computation of unknown constants C(2)

1,i
, C(2)

2,i
is

difficult, because (i) it requires high-precision arithmetic, and (ii) it
is pretty unstable. On the other hand, in this case we have a small
parameter 1/|a|  1 in (8), so we can find an asymptotic solution of
(8).

We start with a rigorous definition of the small parameter
ε ≡ −kv1

j,i
/p.  Here, when choosing the sign of k, we should not rely

on the analysis of Section 2.2, because we only require conver-
gence of our asymptotic solution when ε → 0. Below we assume
that |ε|  1.14 With this definition in mind, and using definitions in
(10), we re-write (8) in the form


XB̂j,XX +
(

2k − 1
4

εX
)

B̂j = 2kBj−1(X, �j−1), X = X − �, (20)

where |2k| = 1. This equation belongs to the class of singularly per-
turbed differential equations [26]. It can be solved by using either
the method of matching asymptotic expansions [20], or the method
of boundary functions [25] which we  will use below.

The need for a special method is due to the fact that for a regular
asymptotic expansion of the unknown function B̂(X, �) in a series
in powers of the small parameter ε, zeroth-order approximation
yields B̂(0)(X, �j) = Bj−1(X, �j−1). Here the superscript (0) denotes the
order of the approximation. Obviously, this solution, which does
not does not depend on any free parameter, is incorrect in the vicin-
ity of the end points of the interval [Xi−1, Xi], where the solution and
its first derivative have to be continuous functions of X. So we do
not have any degrees of freedom to satisfy this continuity. That is
why (20) belongs to the class of singularly perturbed differential
equations, which cannot be solved by using regular expansions in
powers of ε.

Following [25], we represent the solution of (20) on the interval
[Xi−1, Xi] in the form

B̂(X, �j) =
∞∑

s=0

εsB̂∗,s(X, �j) +
∞∑

s=0

εs�(s)(xi−1, �j) +
∞∑

s=0

εs(s)(xi, �j).

(21)

Here B̂∗(X, �j) is the solution of the so-called “reduced” equation,
while �(xi−1, �j) and (xi, �j) are the so-called boundary functions.
The boundary functions vanish far away from the boundaries Xi−1,
Xi when ε → 0. On the other hand, they are needed to ensure that
the solution satisfies the boundary conditions. For any small fixed
ε  1, ε /= 0 the asymptotic solution is an approximation of the
exact solution which can be obtained up to O(εN) with N being an
arbitrary positive integer, see [25].

Also in (21) xi−1 = (X − Xi−1)/
√

ε is the stretched distance to the
left boundary, and xi = (X − Xi)/

√
ε is the stretched distance to the

right boundary.
Based on the method of [25], in zeroth-order approximation the

reduced equation, which follows from (20) at ε → 0, has a trivial
solution B̂,0∗(X, �j) = Bj−1(X, �j−1). Then, from (20) the boundary
function �(0)(x, �j) solves the equation

(x − �i)�
(0)
xx (x, �j) + 2k�(0)(x, �j) = 0. (22)

The latter has the following solution [23]
14 In what follows, for simplicity we omit the modulo, i.e. by saying that ε is small
we mean that |ε|  1.
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N = 12 is usually sufficient. The coefficients Sts can be found
explicitly, see, e.g., LS2011. It is also known that this algorithm
requires high-precision arithmetic for its implementation. This
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2
i−1(x) ≡ −2k(x − �i) = − 2k√

ε
(X − Xi−1 − √

ε�i).

ere C1, C2 are two integration constants, and I1(x), K1(x) are the
odified Bessel functions of the first and second kind.
We must prove that �(0)(x, �j) → 0 when ε → 0. Based on [1], p.

58, we know that this is true for K1(2�i−1(x)) if k < 0 since X > Xi−1,
ut not for I1(2�i−1(x)). Therefore, in (23) we must put C1 = 0, and

 = −1/2. Note, that for v1
j,i

< 0 ε ∈ C, but this is not a problem.

Similar arguments show that for (0)(x, �j) in zeroth-order
pproximation in ε the solution reads

(0)(x, �j) = C2�i(x)K1(2�i(x)),

�2
i
(x) = − 1√

ε

(
X − Xi − √

ε�i

)
.

hus, finally, zeroth-order asymptotic solution of (20) has the form

B̂(0)(X, �j) = Bj−1(X, �j−1) + C1�i−1(x)K1(2�i−1(x))

+C2�i(x)K1(2�i(x)).

The unknown constants C1, C2 can be found using the method
escribed in the next section. The values of Bj−1(X, �j−1) at the points
i−1, Xi can be obtained by using our no-arbitrage interpolation
escribed in Section 3.

The next approximations in ε can also be constructed based on
he general method of [25]. The reduced equation now reads

B̂(∗,0)
XX (X, �j) − 1

4
XB̂(∗,0)(X, �j) + 2kB̂(∗,1)(X, �j) = 0,

ith the obvious solution

ˆ(∗,1)(X, �j) = 1
2k

X
[

1
4

∂X,X B̂j−1(X, �j−1) − B̂j−1(X, �j−1)
]

.

s B̂j−1(X, �j−1) solves (7), we can represent ∂X,X B̂j−1(X, �j−1) with
 > 1 in the form

X,X B̂j−1(X, �j−1) = − 2p

vj−1,i(X)
Bj−2(X, �j−2) −

(
2p

vj−1,i(X)
+ 1

4

)
B̂j−1.

The equation for �(1)(x, �j) is

x − �i)�
(1)
xx (x, �j) + 2k�(1)(x, �j) = 1

4
(x − �i)�

(0)
xx (x, �j) = − k

2
�(0)(

his equation is similar to (22), the only difference being that now
t is inhomogeneous. Accordingly, its solution reads

(1)(x, �j) = �i−1(x)K1(2�i−1(x)) + I(1)
i−1, (24)

I(1)
i−1 = − k

2

{
�i−1(x)I1(2�i−1(x))

∫
K1(2�i−1(x))

�i−1(x)
�(0)(x, �j)dx

−�i−1(x)K1(2�i−1(x))

∫
I1(2�i−1(x))

�i−1(x)
�(0)(x, �j)dx

}

= − k

2

{
�i−1(x)I1(2�i−1(x))

∫
K2

1 (2�i−1(x))dx
−�i−1(x)K1(2�i−1(x))

∫
I1(2�i−1(x))K1(2�i−1(x))dx

}

ional Science 24 (2018) 195–208

.

From [24] we have∫
K2

1 (2�i−1(x))dx = �i−1(x)K2
1 (2�i−1(x)) − K0(2�i−1(x))K2(2�i−1(x)),∫

I1 (2�i−1(x))K1(2�i−1(x))dx =
∫

I1(2
√

x − �i)K1(2
√

x − �i)dx

= 2

∫
yI1(2y)K1(2y)dy = y2

[(
1 + 1

4y2

)
I1(2y)K1(2y)

−I′
1(2y)K ′

1(2y)

]
− 1

4
, y ≡ �i−1(x),

I′
1(2y) = 2

[
I0(2y) − 1

y
I1(2y)

]
, K ′

1(2y) = −2

[
K0(2y) + 1

y
K1(2y)

]
.

We  emphasize that in (24) we  do not need free constants since they
already appear in zeroth-order solution. Therefore, the boundary
conditions can be satisfied by choosing appropriate values for these
constants.

Accordingly, the function (1)(x, �j) can be found in a similar
way. The overall solution is given by the expression (24), where
�i−1(x) must be replaced with �i(x). This finalizes the construction
of the first-order approximation.

We  will not construct higher order approximations for
B̂(s)(X, �j), s > 1 because incorporation of the first two  terms
already provides a good approximation with the accuracy of O(ε2)
(since usually ε is of order 0.1 or less). Also, as we observed in our
numerical experiments, using these asymptotic solutions as part of
the calibration procedure makes the latter fairly stable.

6. The calibration procedure

The calibration procedure runs sequentially for each time step
beginning from j = 1 and up to j = M.  Given the solution at the previ-
ous time step Bj−1(X, �j), we proceed by making some initial guess
for the parameters v0

j,i
, v1

j,i
, i = 0, . . .,  nj .15 Actually, we  need this

guess just for v1
j,i

, i = 0, . . .,  nj and v0
j,nj

, because based on (5)

v0
j,i = v0

j,nm
+

nj∑
k=i+1

Xk(v1
j,k − v1

j,k−1), i = 0, nj − 1. (25)

So the total number of the unknown parameters to be determined
is nj + 2. Since for maturity Tj only nj market quotes are given,
we need two  additional conditions to provide a unique solution.
For instance, often traders have an intuition about the asymptotic
behavior of the volatility surface at infinity, which, according to our
construction, is determined by v1

j,nj
and v1

j,0.

Using the analytical solution B̂j(X, p) for a given maturity, the
scaled Put option prices B(Xi, �j) can be calculated similarly to
LS2011 by computing the inverse Laplace-Carson transform. The
latter can be efficiently performed by using the Gaver–Stehfest
algorithm

B(X, �j) =
(N)∑
s=1

St(N)
s

k
B̂(X, s�), � = log 2

�j
. (26)

This algorithm was studied in many papers (see, e.g., [14] and
references therein), and, provided that the resulting function is
non-oscillatory, converges very quickly. For instance, choosing

(12)
effect is especially pronounced for small �j, so the inversion can

15 If j = 1 the previous time solution is just the payoff function.
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Table 2
XLF implied volatilities for the Call options.

T K, Put

18 19 20 21 21.5 22 23

4/4/2014 – – 39.53 23.77 19.73 16.67 –
4/19/2014 – 32.90 26.79 20.14 – 15.19 12.93
5/17/2014 33.27 26.88 23.08 18.94 – 16.12 13.86
6/21/2014 27.84 23.90 21.07 18.88 – 16.95 15.82

NYSEArca on March 25, 2014. The spot price of the index is S = 22.64,
and r = 0.0148, q = 0.01. The option implied volatilities (IV) are given
in Tables 2 and 3. We  take all OTM quotes and some ITM quotes
A. Itkin, A. Lipton / Journal of Com

ecome numerically unstable unless a sufficient number of signif-
cant digits is used.

Once all the option prices are computed, they can be compared
ith given market quotes. Hence, some kind of a least-square min-

mization procedure can be utilized to find the final values of all
he unknown parameters that fit model option prices to market
uotes. Complexity-wise, at every iteration we need to compute
he solution at nj spatial points and N temporal points, the former
re given, the latter are prescribed by the Gaver–Stehfest algorithm.
lso every such solution, as it is defined in (12), requires 2nj con-
tants C1, . . .,  C2nj

, which solve the corresponding system of linear
quations. As it was mentioned earlier, due to its special structure,
his system can be solved with complexity of O(2nj). Overall, com-
lexity of performing one iteration is O(2njN)O(Ku), where O(Ku)

s complexity of computing all Kummer’s functions for the solution
n one spatial point. This seems to be a significant improvement in
erformance as compared, e.g., with LS2011, where computation
f the source terms required numerical integration.

.1. Initial guess for the calibration

Obviously, the calibration is a time-consuming process, there-
ore, having a smart initial guess significantly improves its
onvergence rate.

Suppose we have already obtained all values of the param-
ters for maturities Tj, j ∈ [1, j1], j1 < M,  and now need to run
he calibration for the maturity Tm, m = j1 + 1. Also suppose we
re given market values w(m, i), i = 1, . . .,  nm for the implied
ariance. To produce an “educated” initial guess for the calibra-
ion procedure, we suggest to use (2) to get the initial values of
1
m,i

, i = 1, . . .,  nm − 1 and v0
m,nm

. In particular, the first deriva-

ives ∂T w(m,  i), ∂Xw(m, i) in the right-hand-side of (2) can be
pproximated by the finite-differences of the first order using
wo given values of w in the strike and time space, and the sec-
nd derivative ∂2

Xw – by using the second order approximation
ith three given values of w in the strike space. When computing

T w(m, i) ≈ [w(m, Ki) − w(m − 1, Ki)]/�m it is possible that market
uote w(m − 1, Ki) is not available at Tm−1; in this case interpo-

ation/extrapolation in K over given quotes at Tm−1 can be used
o get this value. This calculation generate values for �m,i, i ∈

 ∩ [1,  nm]. If some of them are negative, they can be replaced by a
mall positive number ı.

Next, we use (25) and obtain a system of linear equations of the
orm

v0
m,nm

+
nm∑
k=i

Xk(v1
m,k − v1

m,k−1) + v1
m,iXi = �i,m, i ∈ [1,  nm − 1],

v0
nm,m = �nm,m − v1

nm,mXnm ,

here the values v1
m,nm

, v1
m,0 are given. Since this system is upper tri-

ngular, it could be efficiently solved with linear complexity O(nm).

. Option prices for short T

As was mentioned in the previous section, computation of the
nverse Laplace transform by using the Gaver–Stehfest algorithm
equires very high-precision arithmetic for small �j. Therefore, in
his limit it does make sense to solve the modified Dupire’s equation
n a different way, namely by using an asymptotic expansion for its
olution at �j → 0, see also LS2011.

For the time-homogeneous models of the local volatility, i.e.,

hen the volatility does not depend explicitly on time, this prob-

em was considered in various papers, see, e.g., [11] and references
herein. For the time-inhomogeneous model it was further ana-
yzed in [11]. In that paper an asymptotic representation for the
7/19/2014 26.09 22.81 20.29 18.13 – 16.30 14.93
9/20/2014 24.20 22.23 20.32 18.76 – 17.40 16.41

European call option price C(�j, x) with x = log S was obtained
by using an expansion of the transition density function of a
one-dimensional time inhomogeneous diffusion. If x < log K this
asymptotic solution reads

C−(�j, x) = vj(K)K√
2�

u0(x, log K)
d2(x, log K)

�3/2
j

exp

[
−d2(x, log K)

2�j

]
,

d(x, y) =
∫ y

x

dx√
vj(x)

,

(27)

u0(x, y) =
(

vj(x)

v3
j
(y)

)1/4

exp

[
−1

2
(y − x) + (r − q)

∫ y

x

ds

vj(s)

]
,

where the superscript (−) is used to indicate that this solu-
tion corresponds to x < log K.16 Also, when deriving (27) it is
assumed that ∀x ∈ R  ∃C > 0 : C−1 ≤ �j(x), |� ′

j
(x)| ≤ C, |� ′′

j
(x)| ≤

C. This assumption may  fail at the boundaries when S → 0 and
S → ∞.

Having Call prices C(�j, xi) computed for all strikes Ki, i = 1, . . .,  nj
and a particular maturity �j  mini(1/�j,i), we can also compute the
corresponding Put prices by using Call-Put parity. Then, running
parameters for the local variance function can be found by cali-
bration. Note, that since vj(x) is piecewise linear in X, the integral
in (27) can also be constructed as a sum of various contributions.
When calculating these contributions, we rely on the fact that if x,
y belong to the interval i, the variance on this interval is given by
(4), so that

d(x, y) =
∫ y

x

dx√
b − a2x

= 2
a2

(√
b2 + a2Y −

√
b2 + a2X

)
,

∫ y

x

ds

vj(s)
= 1

a2
log

b2 + a2Y

b2 + a2X
,

where b = b2 + a2(log K + �).
If x > log K, from [11] we have

C+(�j, x) = ex − Ke−r�j − C−(�j, x).

8. Results and discussion

In our numerical test we  use the same data set as in [13], i.e., we
take data from http://www.optionseducation.org on XLF traded at
which are very close to the at-the-money (ATM).

16 In our notation x = log K − (r − q)T − X.

http://www.optionseducation.org
http://www.optionseducation.org
http://www.optionseducation.org
http://www.optionseducation.org
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Table 3
XLF implied volatilities for the Put options.

T K, Call

21 21.5 22 22.5 23 24 25 26 27 28

4/4/2014 – 16.60 14.69 14.40 14.86 – – – – –
4/19/2014 – – 15.79 – 13.38 15.39 – – – –
5/17/2014 16.71 – 14.48 – – 13.75 – – – –

– 13.92 14.28 16.58 – –
– 14.36 14.19 15.20 – –
– 14.99 14.56 14.47 14.97 16.31
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Fig. 4. Term-by-term fitting of the local variance.
6/21/2014 16.31 – 14.78 – 

7/19/2014 16.82 – 15.24 – 

9/20/2014 17.02 – 15.84 – 

When strikes for Calls and Puts coincide, we  take an average
f Icall and Iput with weights proportional to 1 − |�|c and 1 − |�|p
espectively, where �c, �p are option Call and Put deltas.17

We  have already mentioned that in our model for each term the
lopes of the smile at plus and minus infinity, v1

j,nj
and v1

j,0, are free

arameters. So often traders have an intuition about these values.
owever, in our numerical experiments we take for them just some
lausible values, which are given in Table 5.

When calibrating the model to market data, we  use the stan-
ard Matlab fmincon function. We  start by using an “active-set”
lgorithm (see Matlab documentation on fmincon), and if it does
ot converge, switch to an “sqp” algorithm (it is also described in
he Matlab documentation). We  emphasize that optimization of
his step is not a subject of this paper, and for a more detailed dis-
ussion of various problems related to the calibration of the local
olatility surface we refer the reader to a recent paper [16] and
eferences therein.

To elaborate a bit more on this point, construction of the local
olatility surface given the market data on vanilla European options
equires solving two embedded problems. One is to provide an effi-
ient optimization algorithm to solve, e.g., a minimization problem
hich appears if one uses a least-square approach. There is a wide

iterature on various approaches to solving this problem, which is
nown to be ill-posed. The other problem is that when runnig this
ptimization, at every step we need to compute either the theo-
etical option prices or the corresponding implied volatilities, by
olving the Dupire equation. In this paper we deal with the second
roblem by (i) given T we use a piecewise linear approximation in

 of the local variance term, and (ii) provide a no-arbitrage inter-
olation of the source term in X18 which allows the whole solution
o be obtained in closed form.

Therefore, since we do not consider the optimization in detail,
t is provided here for illustrative purposes, and, certainly, a more
ophisticated and powerful algorithm could be used to a greater
ffect.

The results of such a calibration which is done term-by term, are
iven in Fig. 3. Here each subplot corresponds to a single maturity T
marked in the legend) and shows market data (discrete points) and
omputed values (solid line). This simple local calibration algorithm
rovides rather decent results, except for the vicinity of X =−0.5 in
he last subplot.

For the first two maturities we successfully use the asymptotic

ethod described in Section 7. Then, for the next two maturities,

he method described in Section 5 provides good results. Finally,

17 By doing so we  do take into account effects reported in [2], who  pointed out that
he IVs calculated from Call and Put option prices corresponding to the same strike
o  not coincide, although they should be equal in theory. Our weights are chosen
ccording to a pure empirical rule of thumb, and a more detailed investigation of
his effect is required.
18 The no-arbitrage in T, i.e., the calendar no-arbitrage is already addressed in this
pproach since we  use an exact in time solution of the Dupire equation given by the
nverse Laplace transform.
Fig. 5. The local variance surface constructed using the proposed approach.

for the last two maturities a combination of the general algorithm
with that described in Section 5 has to be used.

The local variance curves obtained as a result of this fitting are
given term-by-term in Fig. 4. The corresponding local variance sur-
face is represented in Fig. 5.

It can be seen that the local variance is positive everywhere on
the grid, so that our construction is arbitrage-free.

Performance-wise the proposed algorithm is reasonably effi-
cient. Indeed, we  ran our tests in Matlab using two Intel Quad-Core

i7-4790 CPUs, each of 3.80 Ghz. As was mentioned in the previous
section, the calibration time strongly depends on the method cho-
sen to compute B̂(X, T). Typical results are given in Table 4. These
results are normalized per number of strikes for a given term. Obvi-
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Fig. 3. Term-by-term fitting of market prices construct

Table 4
Typical time to converge (per strike) using various algorithms for computing B̂(X, T).

Method T  1 |a| � 1 general
Time, s 1.0–1.4 1–7 5–7

Table 5
Parameters v1

j,0
and v1

j,nj
for the option data in Table 2 and 3.

j Tj v1
j,0

v1
j,nj

1 4/04/2014 −0.1206 0.1000
2  4/19/2014 −0.1000 0.1000
3  5/17/2014 −0.1309 0.1000
4  6/21/2014 −0.1000 0.1000
5  7/19/2014 −0.1000 0.1000
6  9/20/2014 −0.1000 0.1000

o
c
o
i
fi
t
t
a
t
g
p
t
t
t
i
i

cases we propose alternative methods constructed by using asymp-
totic (regular or singular) expansions, which do not suffer from
these issues. In our opinion, this is an interesting and practically
usly, they could be considered just as a crude estimation, since the
onvergence strongly depends on the quality of the initial guess. In
ur calculations we used the approach described in Section 6.1. Still,
t can be seen that the second method in Table 4 is slower than the
rst one as it requires the evaluation of the Bessel functions. The
hird method requires multiple computations of Kummer’s func-
ions and is the slowest one. However, as we use the Gaver–Stehfest
lgorithm, it can be fully parallelized. Same is true for the compu-
ation of Kummer’s functions in all points Xi, i ∈ Z ∩ [1,  nj] for a
iven maturity Tj, which we do at every iteration of the calibration
rocedure. Therefore, having a sufficient number of cores, a poten-
ial speedup of the parallel implementation should be proportional
o N = 12 (the number of the Gaver–Stehfest algorithm time steps)
imes the number of strikes. In our case this provides the calibration
n less than a second per maturity even when the general method
s used.
ed using the whole set of data in Tables 2 and 3.

9. Conclusion

In this paper we provide an extension of the approach proposed
in LS2011 by replacing a tiled local variance shape with a piece-
wise linear construction and relaxing their assumptions about zero
interest rates and dividend yields. Yet our approach, which com-
bines an application of the Laplace-Carson transform and solution
of the resulting inhomogeneous ordinary differential equation in
terms of Kummer’s hypergeometric functions, remains analytically
tractable.

When solving the modified Dupire equation by utilizing the
Laplace-Carson transform method, one must be cognizant of the
following issue. To compute the source term h(X) = pI12(X) at some
time step j we need the function Bj−1(X, �j−1) obtained at the pre-
vious time step. However, the market quotes for the maturities Tj
and Tj−1 could be given at different sets of X even if the strikes
K are same, since, by definition, X = log(K/F) and F = F(T). There-
fore, we need the values of Bj−1(X, �j−1) at certain points X where
they have not been calculated yet. LS2011 used an interpolation
to obtain the required values. However, this interpolation must be
carefully constructed to preserve no-arbitrage, and this problem
was not addressed in LS2011. In this paper we propose an interpo-
lation which allows computation of the source terms in closed form
(while in LS2011 an additional numerical integration for computing
the source terms was required), and prove that our interpolation
does not create arbitrage. Overall, the approach of this paper is
more accurate (piecewise linear term instead of a piecewise con-
stant), more efficient (closed form solution instead of a numerical
integration) and more reliable (proven no-arbitrage).

In addition, we  noticed that using the general algorithm for
small maturities or steep local variance slopes often results in
various inefficiencies and instabilities. Therefore, for these special
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mportant extension of the general methodology described in the
revious two paragraphs.

Numerical experiments presented in the paper demonstrate
obustness of our approach. Obviously, closed-form solutions for
he source terms and asymptotic solutions, expressed in terms
f functions less computationally expensive than Kummer’s func-
ions, significantly speed up the calibration. The implementation
ould be made more efficient by using the internal parallelism of
he Gaver–Stehfest algorithm, and the fact that Kummer’s func-
ions corresponding to different points Xi, i ∈ Z ∩ [1,  nj] for a given

aturity Tj could be computed in parallel.
By its nature, our model (as well as any other LV model) provides

ust a fit for the current market snapshot, and does not consider
ny dynamics for the local volatility surface itself. While the lat-
er issue should be investigated separately, our choice of the LV is
arsimonious enough to greatly facilitate this endeavor.
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ppendix A. Convergence of I12(X) for X → ±∞.

In this Appendix we prove the following Proposition:

roposition 2. For X → ±∞ the function I12(X), defined in (9), van-
shes.

roof. First, we intend to prove this Proposition for j = 1. In this
ase the (9) has the form

ˆ
 =
{

C1y1 + C2y2 + ph1(X), X ≤ 0,

C3y1 + C4y2 + ph2(X), X > 0,
(28)

hi(X) = y2I1(gi(X)) − y1I2(gi(X)), i = 1, 2,
g1(X) = eX/2, g2(X) = e−X/2,

Is(gl(X)) =
∫ X

�

ys
gl(X)

(b2 + a2X)W
dX, s, l ∈ Z ∩ [1,  2].

hus, in this case I12(X) = h1(X) if X ≤ 0, and I12(X) = h2(X) if X > 0.
nce this is done, due to the boundary conditions at X → −∞,  the

unction B̂(X, �j) in (9) tends to g1(X) in (28), and at X → ∞ we  have
ˆ(X, �j) → g2(X). Therefore, at X → −∞ we have I12(X) → h1(X), and
t X → ∞,  similarly I12(X) → h2(X). Thus, the first step of the proof
s sufficient to prove the Proposition in its entirety. At X → −∞
according to Section 2.1 this region belongs to the area where
1
j,i

< 0) we have z → ∞,  and, as follows from Table 1 and (28)

I1(g1(X)) =
∫

y1(X)g1(X)
(b2 + a2X)W

dX = �(a + 1)
a2

e−�/2

∫
e−z/2M(1 + a, 2, z)dz, (29)

I2(g1(X)) =
∫

y2(X)g1(X)
(b2 + a2X)W

dX = �(a + 1)
a2

e−�/2

∫
e−z/2U(a + 1, 2, z)dz.
hus,

1(z) = �(a + 1)
a2

G(z), (30)
ional Science 24 (2018) 195–208

G(z) ≡ e−z/2M(1 + a, 2, z)

∫
e−z/2U(a + 1, 2, z)dz − e−z/2

−U(1 + a, 2, z)

∫
e−z/2M(1 + a, 2, z)dz.

From [22], at z → ∞ we  have the following asymptotic series rep-
resentation

U(a, 2, z) = �∞(z), �n(z) ≡ z−a

n∑
s=0

(a(a − 1))s

s!
(−z)−s, (31)

M(a, 2, z) = �∞(z), �n(z) ≡ ezza−2

�(a)

n∑
s=0

(1 − a)s(2 − a)s

s!
z−s,

where (·)s is the Pochhammer symbol.
Let us define the function Gn(z) in the same way as G(z) in

(30), but replacing U(a, 2, z) = �∞(z) with �n(z). It is clear that
lim

n→∞
Gn(z) = G(z). Substituting (31) into this definition and perform-

ing integration term-by-term, we  arrive at

∫
e−z/2�n(z) = −2−a

n∑
s=0

f (a, s)2n−s(−1)s�(−s − a, z/2),  (32)

∫
e−z/2�n(z) = −(−2)a

n∑
s=0

f (a, s)2n−s(−1)s�(−s + a, −z/2),

f (a, s) = (a(a − 1))s

s!
.

where �(a, z) is an incomplete gamma  function. By [22], at z → ∞
we have

�(a, z) = za−1e−z

∞∑
s=0

(−1)s (1 − a)s

zs
.

Substituting this expression into (32) and collecting terms, we can
check that the leading term in this series is Gn(z) ∼ z−2. Thus, Gn → 0
at z → ∞ as 1/z2. Since this convergence rate does not depend on n,
we can take the limit n → ∞ and see that G(z) → 0 at z → ∞.  Since at
k = 1/2 we  have z = � − X, that means that that h1(X) → 0 for X → −∞.

For h2(x) the representation for I1(g2(X)), I2(g2(X)) is similar to
that in (29) and reads

I1(g2(X)) =
∫

y1(X)g2(X)
(b2 + a2X)W

dX = − �(a + 1)
a2

e−�/2

∫
e−z/2U(1 + a, 2, z)dz,

I2(g2(X)) =
∫

y2(X)g2(X)
(b2 + a2X)W

dX = − �(a + 1)
a2

e−�/2

∫
e−z/2M(1 + a, 2, z)dz.
Since we  need the limit z → ∞,  the convergence of these integrals to
zero can be proved similarly to the previous case of z → −∞.  Thus,
h2(X) → 0 for X → ∞.  �
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ppendix B. Closed form solution for I12(X)

Here we derive an analytical expression for I12(X) in (9), which
akes into account our approximation of B(X, �j−1) presented in
ection 3, and reads

I12(X) = y2I1(X) − y1I2(X),

I1(X) =
∫ X

�

y1Bj−1(X, �j−1)
(b2 + a2X)W

dX

=
∫ X

�

y1[˛−
1 e−X/2 + (ˇ+

1 X + ˇ+
2 )eX/2]

(b2 + a2X)W
dX,

I2(X) =
∫ X

�

y2Bj−1(X, �j−1)
(b2 + a2X)W

dX

=
∫ X

�

y2[˛−
1 e−X/2 + (ˇ+

1 X + ˇ+
2 )eX/2]

(b2 + a2X)W
dX.

uppose we compute these integrals on the interval [Xi, Xi+1], i.e.
 ∈ [Xi, Xi+1]. As the lower limit of integration � it is convenient to
hoose � = Xi. Then the coefficient a2, b2 are constant on this interval,
nd so are a, ˛, ˇ. The homogeneous solutions y1, y2 should be
hosen according to the analysis of Section 2.

v1
j,i < 0 . According to Table 1, for negative v1

j,i
we have

y1 = zeX/2U(a + 1, 2, z), y2 = zeX/2M(1 + a, 2, z),

W = − e�

�(ai + 1)
,  z = � − X.

herefore,

I2 = −�(a+1)e−�

∫
eX/2zM(1+a,  2, z)

b2+a2X
[˛−

1 e−X/2+(ˇ+
1 X+ˇ+

2 )eX/2]dX

= �(a + 1)
a2

[
˛−

1 J0 + ˇ+
2 e�J1 + e�ˇ+

1 J2
]

,

J0 =
∫

M(1 + a, 2, z)dz, J1 =
∫

e−zM(1 + a, 2, z)dz,

J2 =
∫

(� − z)e−zM(1 + a, 2, z)dz = �J1 − J3,

J3 =
∫

ze−zM(1 + a, 2, z)dz.

From [21] after some transformations we obtain

J1 =
∫

e−zM(1 + a, 2, z)dz = 1
a

e−zM(1 + a, 1, z),

J0 =
∫

M(1 + a, 2, z)dz = 1
a

M(a, 1, z),

J3 =
∫

ze−zM(1 + a, 2, z)dz = 1
2

z2e−zM(a  + 2, 3, z).

imilarly,

I1 = −�(a+1)e−�

∫
eX/2zU(1+a,  2, z)

b2+a2X
[˛−

1 e−X/2+(ˇ+
1 X+ˇ+

2 )eX/2]dX

= �(a + 1)
a2

e−�
[
˛−

1 J0 + ˇ+
2 e�J1 + ˇ+

1 e�J2
]

,

J0 =
∫

U(1 + a, 2, z)dz, J1 =
∫

e−zU(1 + a, 2, z)dz,
J2 =
∫

Xe−zU(1+a, 2, z)dz = �J1 − J3, J3 =
∫

ze−zU(1+a, 2, z)dz.
[

[
[
[
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Again, from [21] we can obtain

J0 =
∫

U(a + 1, 2, z)dz = −1
a

U(a, 1, z),

J1 =
∫

e−zU(a + 1, 2, z)dz = −e−zU(a, 1, z),

J3 =
∫

ze−zU(a, 2, z)dz = −z2e−zU(a + 2, 3, z).

v1
j,i > 0 . According to Table 1, for positive v1

j,i
we have

y1 = ze−X/2U(a + 1, 2, z), y2 = ze−X/2M(1 + a, 2, z),

W = − e�

�(a + 1)
,  z = � + X.

Hence

I2 = −�(a+1)e−�

∫
ze−X/2M(1+a,  2, z)[˛−

1 e−X/2+(ˇ+
1 X+ˇ+

2 )eX/2]
b2+a2X

d

= −�(a + 1)
a2

e−�
[
˛−

1 e�I0 + ˇ+
2 I1 + ˇ+

1 I2
]

,

I0 =
∫

e−zM(1 + a, 2, z)dz = J1, I1 =
∫

M(1 + a, 2, z)dz = J0,

I2 =
∫

(z − �)M(1 + a, 2, z)dz = I3 − �J0,

I3 =
∫

zM(1 + a, 2, z)dz = z − 1
a

M(a, 1, z) + 1
a

M(a − 1, 1, z).

Similarly,

I1 = −�(a+1)e−�

∫
ze−X/2U(1+a, 2, z)[˛−

1 e−X/2+(ˇ+
1 X+ˇ+

2 )eX/2]
b2+a2X

d

= −�(a + 1)
a2

e−�
[
e�˛−

1 P2 + ˇ+
2 P0 + ˇ+

1 (P3 − �P0)
]

,

P0 =
∫

U(1 + a, 2, z)dz = J0, P2 =
∫

e−zU(1 + a, 2, z)dz = J1

P3 =
∫

zU(1 + a, 2, z)dz = − z

a

(
U(a, 1, z) + 1

a − 1
U(a, 2, z)

)
.
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