
Cutting edge investments: Trading strategies

A closed-form solution for optimal
mean-reverting trading strategies

All market makers are confronted with the problem of defining profit-taking and stop-out levels. More generally, all execution traders

holding a particular position for a client must determine at what levels an order needs to be fulfilled. Those optimal levels can be

ascertained by maximising the trader’s Sharpe ratio in the context of Ornstein-Uhlenbeck processes via Monte Carlo experiments. In this

article,Alex Lipton and Marcos Lopez de Prado develop an analytical framework and derive those optimal levels by using the method of

heat potentials

M ean-reverting trading strategies in various contexts have been
studied for decades. For instance, Elliott et al (2005) explained
how mean-reverting processes might be used in pairs trading

and developed several methods for parameter estimation. Avellaneda & Lee
(2010) used mean-reverting processes for pairs trading and modelled the hit-
ting time to find the exit rule of the trade. Bertram (2010) developed some
analytic formulas for statistical arbitrage trading where the security price
follows an Ornstein-Uhlenbeck (OU) process. Lindberg (2014) models the
spread between two assets as an OU process and studies the optimal liqui-
dation strategy for an investor who wants to optimise profit over opportu-
nity cost. Lopez De Prado (2018, chapter 13) considered trading rules for
discrete-time mean-reverting trading strategies and found optimal trading
rules using Monte Carlo simulations. We emphasise that most, if not all, of
the analytical results derived by the above authors are asymptotic and valid for
perpetual trading strategies only (see, for example, Bertram 2010; Lindberg
2014). While interesting from a theoretical standpoint, they are challenging
to use in practice. In contrast, our approach deals with finite maturity trading
strategies and, because of that, has immediate applications.

When prices reflect all available information, they oscillate around an equi-
librium level. This oscillation is the result of the temporary market impact
caused by waves of buyers and sellers. The resulting price behaviour can be
approximated through an OU process. The parameters of the process might
be estimated using historical data.

Market makers provide liquidity in an attempt to monetise this oscilla-
tion. They enter a long position when a security is priced below its estimated
equilibrium level, and they enter a short position when a security is priced
above its estimated equilibrium level. They hold that position until one of
three outcomes occurs: (a) they achieve a targeted profit, (b) they experience
a maximum tolerated loss or (c) the position is held beyond a maximum
tolerated horizon.

All traders are confronted with the problem of defining profit-taking and
stop-out levels.More generally, all execution traders holding a particular posi-
tion for a client must determine at what levels an order needs to be fulfilled.
Lopez De Prado (2018, chapter 13) explains how to determine those optimal
levels in the sense of maximising the trader’s Sharpe ratio (SR) in the context
of OU processes via Monte Carlo experiments. Although Lopez De Prado
(2018, p. 192) conjectured the existence of an analytical solution to this prob-
lem, he identified it as an open problem. In this article, we solve the critical
problem of finding optimal trading rules analytically by using the method of
heat potentials. These optimal profit-taking/stop-loss trading rules for mean-
reverting trading strategies provide the algorithm we must follow to exit a

position. To put it differently, we find the optimal exit corridor to maximise
the SR of the strategy.

The method of heat potential is a highly powerful and versatile approach,
popular in mathematical physics (see, for example, Tikhonov & Samarskii
1963). It has been successfully used in numerous important fields, such as
thermal engineering, nuclear engineering and material science. However, it
is not particularly popular in mathematical finance, even though the first
important use case was given by Lipton almost 20 years ago. Specifically, Lip-
ton (2001, section 12.2.3, pp. 462–467) considered pricing barrier options
with curvilinear barriers. More recently, Lipton & Kaushansky (2020a,b)
described several important financial applications of the method.

The SR is defined as the ratio between the expected returns of an execu-
tion algorithm and the standard deviation of the same returns. The returns
are computed as the logarithmic ratio between the exit and entry prices mul-
tiplied by the sign of the order side (C1 for a sell order, �1 for a buy order).
We choose SR as an objective function for two reasons: (a) the SR is the most
popular criterion for investment efficiency (Bailey & Lopez De Prado 2013);
and (b) the SR can be understood as a t -value of the estimated gains and
modelled accordingly for inferential purposes. The distributional properties
of the SR are well-known, and this statistic can be deflated when the assump-
tion of normality is violated (Bailey & Lopez De Prado 2014). It is worth
noting that some practitioners measure the SR using a pathwise approach.
In the latter approach, the SR is a random quantity associated with trading
over a specific period. The expected SR can be optimised mathematically.

Having an analytical estimation of the optimal profit-taking and stop-
out levels allows traders to deploy tactical execution algorithms, with maxi-
mal expected SR. Rather than deriving an ‘all-weather’ execution algorithm,
which supposedly works under every market regime, traders can use our ana-
lytical solution to deploy an algorithm that maximises the SR under the
prevailing market regime.

Definitions of variables

Suppose an investment strategy S invests in i D 1; : : : ; I opportunities
or bets. At each opportunity i , S takes a position of mi units of security
X , where mi 2 .�1; 1/. The transaction that entered such an opportu-
nity was priced at a value of mi Pi;0, where Pi;0 is the average price per
unit at which the mi securities were transacted. As other market participants
transact security X , we can mark-to-market (MtM) the value of that oppor-
tunity i after t observed transactions as mi Pi;t . This represents the value
of opportunity i if it were liquidated at the price observed in the market
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after t transactions. Accordingly, we can compute the MtM profit/loss of
opportunity i after t transactions as:

�i;t D mi .Pi;t � Pi;0/

A standard trading rule provides the logic for exiting opportunity i at t D

Ti . This occurs as soon as one of two conditions is verified:
� �i;Ti

> � , where � > 0 is the profit-taking threshold;
� �i;Ti

6 � , where � < 0 is the stop-loss threshold.
Because � < � , only one of the two exit conditions can trigger the exit

from opportunity i . Assuming opportunity i can be exited at Ti , its final
profit/loss is �i;Ti

. At the onset of each opportunity, the goal is to realise an
expected profit:

E0Œ�i;Ti
� D mi .E0ŒPi;Ti

� � Pi;0/

where E0ŒPi;Ti
� is the forecasted price and Pi;0 is the entry level of oppor-

tunity i .

Parameter estimation

Consider the discrete OU process on a price series fPi;t g:

Pi;t � E0ŒPi;Ti
� D �.E0ŒPi;Ti

� � Pi;t�1/ C �"i;t

such that the random shocks are independently and identically distributed
"i;t � N .0; 1/. The seed value for this process is Pi;0, the level targeted
by opportunity i is E0ŒPi;Ti

�, and � determines the speed at which Pi;0

converges towards E0ŒPi;Ti
�.

We estimate the input parameters f�; �g by stacking the opportunities as:

X D .E0ŒP0;T0
� � P0;0; E0ŒP0;T0

� � P0;1; : : : ; E0ŒP0;T0
� � P0;T �1;

: : : ; E0ŒPI;TI
� � PI;0; : : : ; E0ŒPI;TI

� � PI;T �1/T

Y D .P0;1 � E0ŒP0;T0
�; P0;2 � E0ŒP0;T0

�; : : : ; P0;T � E0ŒP0;T0
�;

: : : ; PI;1 � E0ŒPI;TI
�; : : : ; PI;T � E0ŒPI;TI

�/T

where .� � � /T denotes vector transposition. Applying ordinary least squares
to the above equation, we can estimate the original OU parameters as follows:

O� D
covŒY; X�

covŒX; X�
; O� D Y � O�X; O� D

q
covŒ O�; O��

where, as usual, covŒ�; �� is the covariance operator. We use the above estima-
tions to find optimal stop-loss and take-profit bounds.

Explicit problem formulation

In this rather technical section, we perform transformations in order to for-
mulate the problem in terms of heat potentials. Further details are given in
Lipton & Lopez De Prado (2020).

Consider a long investment strategy S and suppose profit/loss opportunity
is driven by an OU process (see, for example, Lopez De Prado 2018):

dx0
D �0.� 0

� x0/; dt 0
C � 0 dWt 0 ; x0.0/ D 0 (1)

and a trading rule:

R D f� 0; � 0; T 0
g; � 0 < 0; � 0 > 0

Here, x0 is the value of the underlying process, � 0 is its equilibrium level, �0

is the mean-reversion rate and � 0 is the corresponding volatility.
It is important to understand and recognise the natural units associated

with the OU process (1). To this end, we can use its steady state. The steady-
state expectation of the above process is � 0, while its standard deviation is
given by:

˝ 0
D � 0=

p
2�0

As usual, an appropriate scaling is helpful to remove superfluous parameters.
To this end, we define:

t D �0t 0; T D �0T 0; x D

p
�0

� 0
x0

� D

p
�0

� 0
� 0; � D

p
�0

� 0
� 0

� D

p
�0

� 0
� 0; E D

E 0

p
�0� 0

; F D
F 0

�0� 02

and get:
dx D .� � x/ dt C dWt

in the domain:
� 6 x 6 �; 0 6 t 6 T

Now, all the variables are non-dimensional, and the only non-trivial charac-
teristic of the process is its equilibrium value. The steady-state distribution
has an expectation of � and a standard deviation ˝ D 1=

p
2.

According to the trading rule, we exit the trade when (a) the price hits �

to take a profit; (b) the price hits � to stop losses; or (c) the trade expires
at t D T . For a short investment strategy, the roles of f�; �g are reversed:
profits equal to �� are taken when the price hits � , and losses equal to ��

are realised when the price hits � .
Intuitively, we go long when � > 0 and short when � < 0. Assuming we

know the trading rule f�.�; T /; �.�; T /; T g for � > 0, the corresponding
trading rule for � < 0 has the form:

f�.�; T /; �.�; T /; T g D f��.��; T /; ��.��; T /; T g

Thus, we are interested in the maximisation of the SR for non-negative � >
0. We formulate this mathematically below.

For a given T , we define the stopping time:

� D infft W xt D � or xt D � or t D T g

We wish to determine optimal � > 0, � < 0, to maximise the SR:

SR D
Efx�=�gq

Efx2
� =�2g � .Efx�=�g/2

We also need to know the expected duration of the trade:

DUR D Ef�g

Let E.t; x/, F.t; x/ and G.t; x/ be the expected return, squared return
and duration, respectively. We write the terminal boundary value problem
(TBVP) for E.t; x/ as follows:

Et .t; x/ C .� � x/Ex.t; x/ C
1
2 Exx.t; x/ D 0

E.t; �/ D
�

t
; E.t; �/ D

�

t
; E.T; x/ D

x

T

9=; (2)
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The otherTBVPs forF.t; x/ andG.t; x/ have a similar form. Here, as usual,
the subscripts denote partial derivatives.

We can define the SR and the process duration DUR as follows:

SR D
E.0; 0/p

F.0; 0/ � .E.0; 0//2

DUR D G.0; 0/

Our objective is to use the method of heat potentials to solve the above
TBVPs. It is not possible to do so directly. However, the change of variables:

� D T � t; � D
1 � e�2�

2
; � D e�� .x � �/

comes to the rescue. We prefer to solve the problem backwards, rather than
forwards, because it is much more efficient for T ! 1; further details are
given in Lipton & Kaushansky (2020a).

We concentrate on (2). Instead of E.t; x/, we consider E.�; �/, represent
this in the form:

E.�; �/ D OE.�; �/ �
2.� C �/

ln.1 � 2� /

and get the standard initial boundary value problem (IBVP) for the heat
equation:

OE� .�; �/ D
1
2

OE�� .�; �/

OE.�; ˘.�// D e.�/; OE.�; ˘.�// D e.�/; OE.0; �/ D 0

Here:

e.�/ D
2�

ln..1 � 2�/=.1 � 2� //
C

2.˘.�/ C �/

ln.1 � 2� /

e.�/ D
2�

ln..1 � 2�/=.1 � 2� //
C

2.˘.�/ C �/

ln.1 � 2� /

By splitting E.�; �/ into two parts, we can concentrate on solving a homo-
geneous IBVP, which is particularly well-suited to being addressed by the
method of heat potentials (Tikhonov & Samarskii 1963).

We can also derive similar IBVPs for OF .�; �/, OG.�; �/, where:

OF .�; �/ D F.�; �/ �
4.� C .� C �/2/

.ln.1 � 2� //2

OG.�; �/ D G.�; �/ C
1
2 ln.1 � 2� /

These IBVPs have the form:

OF� .�; �/ D
1
2

OF�� .�; �/

OF .�; ˘.�// D f .�/; OF .�; ˘.�// D f .�/; OF .0; �/ D 0

and:

OG� .�; �/ D
1
2

OG�� .�; �/

OG.�; ˘.�// D g.�/; OG.�; ˘.�// D g.�/; OG.0; �/ D 0

where:

f .�/ D
4�2

.ln..1 � 2�/=.1 � 2� ///2
�

4.� C .˘.�/ C �/2/

.ln.1 � 2� //2

f .�/ D
4�2

.ln..1 � 2�/=.1 � 2� ///2
�

4.� C .˘.�/ C �/2/

.ln.1 � 2� //2

g.�/ D
1
2 ln.1 � 2�/; g.�/ D

1
2 ln.1 � 2�/

As a result, we can represent the quantities of interest in terms of OE.�; $/,
OF .�; $/ and OG.�; $/:

SR D
OE.�; $/ � .2.$ C �/= ln.1 � 2� //r

OF .�; $/ � . OE.�; $//2 C
4.� Cln.1�2� /.$C�/ OE.�;$//

.ln.1�2� //2

(3)

DUR D OG.�; $/ �
1
2 ln.1 � 2� / (4)

Here:

� D
1 � e�2T

2
; $ D �

p
1 � 2� �

˘.�/ D
p

1 � 2�.� � �/; ˘.�/ D
p

1 � 2�.� � �/

Thus, after the above transformations, the problem becomes solvable by the
method of heat potentials.

The method of heat potentials

Now we are ready to use the classical method of heat potentials to calculate
the SR. Assume OE, OF and OG can be treated by the same token. To find OE,
one needs to solve the following coupled system of Volterra integral equations
(see, for example, Lipton 2001; Tikhonov & Samarskii 1963):

".�/ C
1

p
2�

Z �

0

.˘.�/ � ˘.�// exp.�
.˘.�/�˘.�//2

2.���/
/

.� � �/3=2
".�/ d�

C
1

p
2�

Z �

0

.˘.�/ � ˘.�// exp.�
.˘.�/�˘.�//2

2.���/
/

.� � �/3=2
".�/ d� D e.�/

(5)

� ".�/ C
1

p
2�

Z �

0

.˘.�/ � ˘.�// exp.�
.˘.�/�˘.�//2

2.���/
/

.� � �/3=2
".�/ d�

C
1

p
2�

Z �

0

.˘.�/ � ˘.�// exp.�
.˘.�/�˘.�//2

2.���/
/

.� � �/3=2
".�/ d� D e.�/

(6)

The corresponding functions for OF and OG are denoted by .�.�/; �.�// and
..�/; .�//, respectively.

Once (5) and (6) are solved, OE.�; �/ can be written as follows:

OE.�; �/ D
1

p
2�

Z �

0

.� � ˘.�// exp.�
.��˘.�//2

2.���/
/

.� � �/3=2
".�/ d�

C
1

p
2�

Z �

0

.� � ˘.�// exp.�
.��˘.�//2

2.���/
/

.� � �/3=2
".�/ d� (7)

In particular:

OE.�; $/ D
1

p
2�

Z �

0

.$ � ˘.�// exp.�
.$�˘.�//2

2.� ��/
/

.� � �/3=2
".�/ d�

C
1

p
2�

Z �

0

.$ � ˘.�// exp.�
.$�˘.�//2

2.� ��/
/

.� � �/3=2
".�/ d�

It is important to note that .".�/; ".�// are singular at � D � . However, due
to the dampening impact of the exponents exp.�.$ �˘.�//2=2.� ��//,
the corresponding integrals still converge.
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1 (a), (b) The expected duration � D .1 � exp.�2G/=2/ as a function of .�; �/; (c), (d) the logarithm of the expected duration G
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The corresponding � D 1.0. Here, and in figures 2 and 3, �0 � � and �1 � �

Once we know OE.�; $/; OF .�; $/ and OG.�; $/, the SR and DUR can
be calculated using (3) and (4).

Numerical method

To compute the SR, we need to find OE.�; $/ and OF .�; $/, and then apply
(3). OE.�; $/ can be found from equation (7) by simple integration with pre-
computed ."; "/. In this section, we develop a numerical method to compute
these quantities by solving (5) and (6), by extending the method described in
Lipton&Kaushansky (2020a). For illustrative purposes, we develop a simple
scheme based on the trapezoidal rule for Stieltjes integrals.

We want to solve a generic system of the form:

�1.�/ C

Z �

0

K1;1.�; s/
p

� � s
�1.s/ ds C

Z �

0
K1;2.�; s/�2.s/ ds D �1.�/

��2.�/ C

Z �

0
K2;1.�; s/�1.s/ ds C

Z �

0

K2;2.�; s/
p

� � s
�2.s/ ds D �2.�/

with respect to variables .�1.�/; �2.�//, where:

Ki;j .�; s/ D
1

p
2�

� i;i .�; s/

.� � s/
exp

�
�

.� i;i .�; s//2

2.� � s/

�
; i D j

Ki;j .�; s/ D
1

p
2�

� i;j .�; s/

.� � s/3=2
exp

�
�

.� i;j .�; s//2

2.� � s/

�
; i ¤ j

Here:

�1;1.�; s/ D ˘.�/ � ˘.s/; �1;2.�; s/ D ˘.�/ � ˘.s/

�2;1.�; s/ D ˘.�/ � ˘.s/; �2;2.�; s/ D ˘.�/ � ˘.s/

It is clear that:

K1;1.�; �/ D
� � �

p
2�

p
1 � 2�

; K1;2.�; �/ D 0

K2;1.�; �/ D 0; K2;2.�; �/ D
� � �

p
2�

p
1 � 2�

Consider a grid 0 D �0 < �1 < � � � < �n D � , and let:

�k;l D �k � �l
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2 (a) The SR as a function of �1 computed by using the method of heat

potentials and the Monte Carlo method for �0 D �1; (b) the SR as a

function of �0 computed using the method of heat potentials and the

Monte Carlo method for �1 D 1
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We can rewrite the relevant integrals as Stieltjes integrals and, using the
trapezoidal rule for approximation of integrals, get the following expression
for .�1

k
; �2

k
/:

�1
k C

kX
iD1

� .K
1;1
k;i

�1
i C K

1;1
k;i�1

�1
i�1/

.
p

�k;i C
p

�k;i�1/

C
1
2 .K

1;2
k;i

�2
i C K

1;2
k;i�1

�2
i�1/

�
�i;i�1 D �1

k

��2
k C

kX
iD1

�
1
2 .K

2;1
k;i

�1
i C K

2;1
k;i�1

�1
i�1/

C

.K
2;2
k;i

�2
i C K

2;2
k;i�1

�2
i�1/

.
p

�k;i C
p

�k;i�1/

�
�i;i�1 D �2

k

where:

�˛
i D �˛.�i /; �˛

i D �˛.�i /; K
˛;ˇ
k;j

D K˛;ˇ .�k ; �i /; ˛; ˇ D 1; 2

The approximation error of the integrals is of order O.�2/, where � D

maxi .�i;i�1/. Hence, on a uniform grid, the convergence is of orderO.�/.
We emphasise that, due to the nature of .e.�/; e.�//, etc, it is necessary to
use a highly inhomogeneous grid that is concentrated near the right end-
point.
� Computation of the SR. Once .".�/; ".�// are computed, we can
approximate OE.�; �/. We are interested in computing these functions at one
point .�; $/, which can be done by approximation of the integrals using the
trapezoidal rule:

OE.�; $/ D
1

2

kX
iD1

.wn;i "i Cwn;i�1"i�1Cwn;i "i Cwn;i�1"i�1/�i;i�1

(8)
where the corresponding weights are as follows:

wn;i D

.$ � ˘ i / exp.�
.$�˘ i /2

2�n;i
/

p
2��

3=2
n;i

wn;i D

.$ � ˘ i / exp.�
.$�˘ i /2

2�n;i
/

p
2��

3=2
n;i

; 1 6 i < n

wn;i D 0; wn;i D 0; i D n

As a result, we get the following algorithm for the numerical evaluation of
the SR.

Algorithm 1 Numerical evaluation of the SR

Step 1. Define a time grid 0 D �0 < �1 < : : : < � .

Step 2. Compute �.�/, �.�/, �.�/ and �.�/ using the numerical method
in the ‘Numerical method’ section above.

Step 3. Compute OE.�; $/ by using (8).

Step 4. Compute OF .�; $/ by the same token.

Step 5. Compute the SR by using (3).

Expected duration of the trade

The method of heat potentials boils down to solving a system of Volterra
equations of the second kind. However, there are particular quantities of
interest that can be calculated directly. One such quantity is the expected
value of the duration of a trade, which terminates when the spread hits one
of the barriers, T D 1 (or � D 0:5). This quantity can be found analyti-
cally by solving an inhomogeneous linear ordinary differential equation. We
show the expected duration as a function of � , � for � D 1 in figure 1.

Given that � ! 0:5 corresponds to T ! 1, we can see from this figure
that for sufficiently remote � , � the process stays within the range Œ�; ��

indefinitely – or, at least, for a very long time.

Numerical results

� Comparison with Monte Carlo simulations. We compute the SR for
various values of� and� , and as a result show the SR as a function of .�; �/.
Then one can choose .�; �/ in order to maximise the SR.
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3 The SR as a function of .�0; �1/ for � D 0.5 and (a), (b) T D 1.96, (c), (d) T D 4.26, and (e), (f) T D 6.56
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A. The SR maximised over .�; �/ for fixed � or T

�; T

� 0.49, 0.8 0.4999, 1.96 0.499999, 4.26

1.0 �� D �4.0 �� D �4.0 �� D �4.0

��
D 4.0 ��

D 4.0 ��
D 4.0

SR D 1.2261 SR D 1.3824 SR D 1.3709

0.5 �� D �4.0 �� D �4.0 �� D �4.0

��
D 0.6 ��

D 0.9 ��
D 1.0

SR D 0.8219 SR D 0.8792 SR D 0.8963

0.0 �� D �4.0 �� D �4.0 �� D �4.0

��
D 0.1 ��

D 0.4 ��
D 0.1

SR D 0.7075 SR D 0.7139 SR D 0.7411

Consider � D 1:0 and� D 0:49, T D 1:96. To ensure the validity of our
derivations, we compare our numerical results with theMonte Carlomethod,
which simulates the process and computes its expectation and variance (see
Lopez De Prado 2018). We show the results for the SR in figure 2.

We see that the relative difference between the method of heat potentials
and the Monte Carlo method is small and mainly comes from the Monte
Carlo noise.
� Optimisation of the SR. In this section, we solve a problem of find-
ing parameters to maximise the SR by analysing it as a function of .�; �/

for different values of � and � . Two problems are considered: (a) fix
� and maximise the SR over .�; �/; and (b) maximise the SR over
.�; �; � /.

Given the natural unit˝ D 1=
p

2, we consider three representative values
of � – namely, � D 1, � D 0:5 and � D 0 – corresponding to strong and
weak mispricing and fair pricing, respectively. We choose three maturities,
� D 0:49, 0:4999 and 0:499999, or, equivalently, T D 1:96, 4:26 and
6:56. For negative � , the corresponding SR can be obtained by reflection if
needed. The optimal bounds .��; ��/ are given in table A.

Table A shows that when the original mispricing is strong (� D 1) it is
not optimal to stop the trade early.When the mispricing is weaker (� D 0:5)
or there is no mispricing in the first place (� D 0) it is not optimal to stop
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losses, but it might be beneficial to take profits. In practice, one needs to
use a highly reliable estimation of the OU parameters to employ these rules
with confidence. For brevity, we show the corresponding SR surface only for
� D 0:5 in figure 3.

Conclusions

In this article, we create an analytical framework for computing optimal stop-
loss/take-profit bounds .��; ��/ for OU driven trading strategies by using
the method of heat potentials.

First, we present a method for calibrating the corresponding OU process
to market prices. Second, we derive an explicit expression for the SR given by
(3) and maximise it with respect to the stop-loss/take-profit bounds .�; �/.
Third, for three representative values of � , we calculate the SR on a grid
of .�; �/, perform an optimisation and present .��; ��/ in table A. We
graphically summarise results for � D 0:5 in figure 3. For strong mispricing,
in agreement with intuition, it is optimal to wait until the trade’s expiration
without imposing stop-loss/take-profit bounds. For weaker mispricing, it is
not optimal to stop losses, but it might be optimal to take profits early. Still,
to be on the safe side, we recommend imposing stop losses chosen following
one’s risk appetite to avoid unpleasant surprises caused by misspecification of
the underlying process.

Our rules help liquidity providers to decide how to offer liquidity to the
market in the most profitable way and help statistical arbitrage traders to
execute their trading strategies optimally.

We shall discuss a new and challenging multi-dimensional version of these
rules (covering several correlated stocks) elsewhere. �
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