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We use a powerful extension of the classical method of heat potentials, recently developed
by the present author and his collaborators, to solve several significant problems of
financial mathematics. We consider the following problems in detail: (a) calibrating the
default boundary in the structural default framework to a constant default intensity; (b)
calculating default probability for a representative bank in the mean-field framework;
and (c) finding the hitting time probability density of an Ornstein–Uhlenbeck process.
Several other problems, including pricing American put options and finding optimal
mean-reverting trading strategies, are mentioned in passing. Besides, two nonfinancial
applications — the supercooled Stefan problem and the integrate-and-fire neuroscience
problem — are briefly discussed as well.
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1. Introduction

The method of heat potentials (MHP) is a highly robust and versatile approach fre-
quently exploited in mathematical physics; see e.g. Tikhonov & Samarskii (1963),
Rubinstein (1971), Kartashov (2001) and Watson (2012), among others. It is essen-
tial in numerous vital fields, such as thermal engineering, nuclear engineering, and
material science. However, it is not particularly well known in mathematical finance,
even though the first meaningful use in this context was described by the present
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author almost 20 years ago. The specific application was to pricing barrier options
with curvilinear barriers; see Sec. 12.2.3 in Lipton (2001) .

In this paper, we demonstrate how a powerful extension of the classical MHP,
recently developed by the present author and his collaborators, can be used to
solve seemingly unrelated problems of applied mathematics in general and finan-
cial mathematics in particular; see Lipton & Kaushansky (2018, 2020a, 2020b),
Lipton & Lopez de Prado (2020), and Lipton et al. (2019). Specifically, we use
the extended method of heat potentials (EMHP) for (a) calibrating the default
boundary for a structural default model with constant default intensity, (b) find-
ing a semi-analytical solution of the mean-field problem for a system of interacting
banks, and (c) developing a semi-analytical description for the hitting time den-
sity for an Ornstein–Uhlenbeck (OU) process. Besides, we demonstrate the efficacy
of EMHP by considering two nonfinancial applications: (a) the supercooled Stefan
problem and (b) the integrate-and-fire model in neuroscience.

We note in passing that, in addition to the problems discussed in this paper, the
EMHP has been successfully used for pricing American put options and for finding
optimal strategies for mean-reverting spread trading; see Lipton & Kaushansky
(2020a, 2020b).

We emphasize that in most cases, the EMHP beats all other known approaches
to the problem in question, and in some instances, for example, for the boundary
calibration problem, it is the only one that can be used effectively.

The paper is organized as follows. In Sec. 2, we present the mathematical prelim-
inaries regarding the classical MHP and describe its useful extensions and general-
izations, which we dub the EMHP. In Sec. 3, we examine the structural default
problem. In Sec. 4, we study the mean-field banking system in the structural
default framework and analyze its stability and resilience. In Sec. 5, we describe
the EMHP approach to calculating the hitting time probability distribution for an
Ornstein–Uhlenbeck process. The EMHP turns to be a powerful and versatile tool,
which solves this complicated problem in its entirety. In Secs. 6 and 7, we consider
two nonfinancial applications of the EMHP — the supercooled Stefan problem
and the integrate-and-fire neuron excitation model. We draw our conclusions in
Sec. 8.

2. Mathematical Preliminaries

In this section, we describe the classical MHP and its beneficial extensions pro-
posed by the present author and his collaborators. The MHP is uniquely well
suited to solving rather challenging problems occurring routinely in applied math-
ematics in general, and in financial engineering in particular. In a nutshell, this
method allows one to reduce a complicated partial differential equation of the
parabolic type with a time-dependent boundary to a much simpler Volterra integral
equation.

2050024-2



2nd Reading

June 20, 2020 8:27 WSPC/S0219-0249 104-IJTAF SPI-J071 2050024

Old Problems, Classical Methods, New Solutions

2.1. The method of heat potentials

Consider a standard heat equation in a one-sided domain with a moving bound-
ary b>(t):

∂

∂t
E>(t, x) =

1
2

∂2

∂x2
E>(t, x), b>(t) ≤ x < ∞,

E>(0, x) = ε>(x), E>(t, b>(t)) = e>(t), E(t, x → ∞) → 0.

(1)

Here and below, we use the superscript > (<) to emphasize the fact that we are inter-
ested in the computational domain limited by the boundary from below (above).
Without loss of generality, we can assume that ε>(x) = 0; the case of a nonzero
initial condition can be solved by splitting

E> = E(t, x) + F>(t, x), (2)

E(t, x) =
∫ ∞

b(t)

H(t, x − y)ε>(y)dy, (3)

where H(t, x) is the standard heat kernel,

H(t, x) =
e−

x2
2t√

2πt
. (4)

Thus, we can restrict ourselves to the case of zero initial condition:

∂

∂t
F>(t, x) =

1
2

∂2

∂x2
F>(t, x), b>(t) ≤ x < ∞,

F>(0, x) = 0, F>(t, b>(t)) = f>(t), F (t, x → ∞) → 0,

(5)

where

f>(t) = e>(t) − E(t, b(t)). (6)

The MHP allows one to represent F>(t, x) in the form

F>(t, x) =
∫ t

0

(x − b>(t′)) exp
(
− (x − b>(t′))2

2(t − t′)

)
ν>(t′)√

2π(t − t′)3
dt′, (7)

where ν>(t) solves the Volterra equation of the second kind:

ν>(t′) +
∫ t

0

Θ>(t, t′)Ξ>(t, t′)ν>(t′)√
2π(t − t′)

dt′ = f>(t), (8)
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and

Θ>(t, t′) =
b>(t) − b>(t′)

(t − t′)
, Ξ>(t, t′) = e−

(t−t′)Θ>2(t,t′)
2 ,

Θ>(t, t) =
db>(t)

dt
, Ξ>(t, t) = 1.

(9)

Similarly, the solution to the problem

∂

∂t
F<(t, x) =

1
2

∂2

∂x2
F<(t, x), ∞ < x ≤ b<(t),

F<(0, x) = 0, F<(t, x → −∞) → 0, F<(t, b(t)) = f<(t),
(10)

has the form

F<(t, x) =
∫ t

0

(x − b<(t′)) exp
(
− (x − b<(t′))2

2(t − t′)

)
ν<(t′)√

2π(t − t′)3
dt′, (11)

where

− ν<(t′) +
∫ t

0

Θ<(t, t′)Ξ<(t, t′)ν<(t′)√
2π(t − t′)

dt′ = f<(t). (12)

Finally, the solution to the two-sided problem

∂

∂t
F><(t, x) =

1
2

∂2

∂x2
F><(t, x), b>(t) ≤ x ≤ b<(t),

F><(0, x) = 0, F><(t, b<(t)) = f<(t), F><(t, b>(t)) = f>(t),
(13)

has the form

F><(t, x) =
∫ t

0

(x − b>(t′)) exp
(
− (x − b>(t′))2

2(t − t′)

)
ν>(t′)√

2π(t − t′)3
dt′

+
∫ t

0

(x − b<(t′)) exp
(
− (x − b<(t′))2

2(t − t′)

)
ν<(t′)√

2π(t − t′)3
dt′, (14)

ν>(t′) +
∫ t

0

Θ�(t, t′)Ξ�(t, t′)ν>(t′)√
2π(t − t′)

dt′ +
∫ t

0

Θ><(t, t′)Ξ><(t, t′)ν<(t′)√
2π(t − t′)

dt′

= f>(t),

−ν<(t′) +
∫ t

0

Θ<>(t, t′)Ξ<>(t, t′)ν>(t′)√
2π(t − t′)

dt′ +
∫ t

0

Θ�(t, t′)Ξ�(t, t′)ν<(t′)√
2π(t − t′)

dt′

= f<(t),

(15)
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where

Θ�(t, t′) =
b>(t) − b>(t′)

(t − t′)
, Θ><(t, t′) =

b>(t) − b<(t′)
(t − t′)

, (16)

and so on.

2.2. Extensions

While Eqs. (7), (8) provide an elegant solution to problem (1), in many instances we
are interested in the behavior of this solution on the boundary itself. For instance,
in numerous problems of mathematical finance, some of which are described below,
what we need to know is the function

g>(t) =
1
2

∂

∂x
F>(t, b>(t)), (17)

which represent the outflow of probability from the computational domain. This
function can be calculated in two ways.

On the one hand, we can integrate the heat equation and get

d

dt

∫ ∞

b>(t)

F>(t, x)dx =
∫ ∞

b>(t)

∂

∂t
F>(t, x)dx − db>(t)

dt
f>(t)

=
1
2

∫ ∞

b>(t)

∂2

∂x2
F>(t, x)dx − db>(t)

dt
f>(t)

= −1
2

∂

∂x
F>(t, b>(t)) − db>(t)

dt
f>(t)

= −g>(t) − db>(t)
dt

(ν>(t) +
∫ t

0

Θ>(t, t′)Ξ>(t, t′)ν>(t′)√
2π(t − t′)

dt′).

(18)

Eq. (7) yields ∫ ∞

b>(t)

F>(t, x)dx =
∫ t

0

Ξ>(t, t′)ν>(t′)√
2π(t − t′)

dt′, (19)

so that

g>(t) = − d

dt

∫ t

0

Ξ>(t, t′)ν>(t′)√
2π(t − t′)

dt′ − db>(t)
dt

(ν>(t)

+
∫ t

0

Θ>(t, t′)Ξ>(t, t′)ν>(t′)√
2π(t − t′)

dt′). (20)

On the other hand, a useful formula derived by the present author and his
collaborators; see Lipton & Kaushansky (2018, 2020a,b), Lipton et al. (2019), gives
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an alternative expression for g>(t):

g>(t) = −
(

1√
2πt

+
db>(t)

dt

)
ν>(t)

− 1
2

∫ t

0

(Φ>(t, t′) + Θ>2(t, t′)Ξ>(t, t′)ν>(t′))√
2π(t − t′)

dt′, (21)

where

Φ>(t, t′) =
(ν>(t) − Ξ>(t, t′)ν>(t′))

(t − t′)
, Φ>(t, t) =

dν>(t)
dt

+
1
2

(
db>(t)

dt

)2

ν>(t).

(22)

On the surface, Eqs. (20), (21) look very different. However, a useful Lemma
proven in Lipton et al. (2019), allows one to connect the two.

Lemma. Let Ψ(t, t′) be a differentiable function, such that Ψ(t, t) = 1. Then

d

dt

∫ t

0

Ψ (t, t′) ν (t′)√
2π (t − t′)

dt′

=
ν (t)√
2πt

+
1
2

∫ t

0

ν (t) − (Ψ (t, t′) − 2 (t − t′)Ψt (t, t′)) ν (t′)√
2π (t − t′)3

dt′, (23)

Alternatively,

d

dt

∫ t

0

Ψ (t, t′) ν (t′)√
2π (t − t′)

dt′ =
∫ t

0

∂
∂t′ ((Ψ (t, t′) − 2 (t − t′) Ψt (t, t′)) ν (t′))√

2π (t − t′)
dt′. (24)

We emphasize that Eq. (21) is easier to use than Eq. (20) in most situations
because it does not involve differentiation. However, if the cumulative outflow
G> (t) =

∫ t

0
g> (t′) dt′ is of interest, the latter equation can be more efficient, since

it can be rewritten as follows:

G> (t) = −
∫ t

0

((
1 + (t − t′)Θ>2 (t, t′)

)
Ξ> (t, t′) ν> (t′)√

2π (t − t′)
+

db> (t′)
dt

ν> (t′)

)
dt′.

(25)

We can calculate g<(t) and g><(t) by the same token. It is important to under-
stand that both Eqs (21) and (20) can be used in the one-sided case, however, in
the case when two boundaries are present, we can only use Eq. (21) because this
equation allows calculating g> and g< individually while Eq. (20) calculates the
difference g> − g<.

2.3. Generalizations

If the MHP were applicable only to the standard Wiener process, it would be
advantageous, if somewhat narrow in scope. Fortunately, it can be applied to a
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general diffusion satisfying the so-called Cherkasov’s condition, which guarantees
that it can be transformed into the standard Wiener process. Such diffusions are
studied in Cherkasov (1957), Ricciardi (1976), and Bluman (1980). The applications
of Cherkasov’s condition in financial mathematics are discussed Sec. 4.2 of Lipton
(2001) and Chap. 9 of Lipton (2018).

Consider a diffusion governed by

dx̃t̃ = δ(t̃, x̃t̃)dt̃ + σ(t̃, x̃t̃)dWt̃, x̃0 = z̃. (26)

We wish to calculate boundary-related quantities, such as the distribution of the
hitting time of a given time-dependent barrier b(t̃):

s̃ = inf{t̃ : x̃t̃ = b̃(t̃)}, z̃ �= b̃(0). (27)

To this end, we introduce

β(t̃, x̃) = σ(t̃, x̃)
∫ x̃ 1

σ(t̃, y)
dy,

γ(t̃, x̃) = 2δ(t̃, x̃) − σ(t̃, x̃)σx̃(t̃, x̃) − 2σ(t̃, x̃)
∫ x̃ σt̃(t̃, y)

σ2(t̃, y)
dy,

(28)

where the lower limit of integration is chosen as convenient. Define

P (t̃, x̃) =

∣∣∣∣∣ β(t̃, x̃) γ(t̃, x̃)

βx̃(t̃, x̃) γx̃(t̃, x̃)

∣∣∣∣∣ ,

Q(t̃, x̃) =

∣∣∣∣∣ σ(t̃, x̃) γ(t̃, x̃)

σx̃(t̃, x̃) γx̃(t̃, x̃)

∣∣∣∣∣ ,

R(t̃, x̃) =

∣∣∣∣∣∣∣∣
σ(t̃, x̃) β(t̃, x̃) γ(t̃, x̃)

σx̃(t̃, x̃) βx̃(t̃, x̃) γx̃(t̃, x̃)

σx̃x̃(t̃, x̃) βx̃x̃(t̃, x̃) γx̃x̃(t̃, x̃)

∣∣∣∣∣∣∣∣
,

(29)

and assume that Cherkasov’s condition is satisfied, so that

R(t̃, x̃) ≡ 0. (30)

Then we can transform x̃ into the standard Wiener process via the following
mapping:

t = t(t̃, x̃) =
∫ t̃

0

Φ2(u, x̃)du,

x = x(t̃, x̃) = Φ(t̃, x̃)
β(t̃, x̃)
σ(t̃, x̃)

+
1
2

∫ t̃

0

Φ(u, x̃)
P (u, x̃)
σ(u, x̃)

du,

(31)

where

Φ(t̃, x̃) = exp
[
−1

2

∫ t

0

Q(u, x̃)
σ(u, x̃)

du

]
. (32)
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In particular, the initial condition becomes

z =
β(0, z̃)
σ(0, z̃)

. (33)

The corresponding transition probability density transforms as follows:

p̃(t̃, x̃; z̃) =
∣∣∣∣∂x(t̃, x̃)

∂x̃

∣∣∣∣ p(t, x; z). (34)

Moreover, the boundary transforms to

b̃(t̃) → b(t) = Φ(t̃, b̃(t̃))
β(t̃, b̃(t̃))
σ(t̃, b̃(t̃))

+
1
2

∫ t̃

Φ(u, b̃(t̃))
P (u, b̃(t̃))
σ(u, b̃(t̃))

du. (35)

Since the MHP is specifically designed for dealing with curvilinear boundaries,
we get a solvable problem. A powerful application of the above approach is demon-
strated in Sec. 5, where the hitting time probability distribution for an Ornstein–
Uhlenbeck process is studied.

2.4. Numerics

There are numerous well-known approaches to solving Volterra equations; see the
work of Linz (1985), among many others. We choose the most straightforward
approach and show how to solve the following archetypal Volterra equation with
weak singularity numerically:

ν(t) +
∫ t

0

K(t, t′)√
t − t′

ν(t′) dt′ = f(t), (36)

where K(t, t′) is a nonsingular kernel. We write∫ t

0

K(t, t′)ν(t′)√
t − t′

dt′ = −2
∫ t

0

K(t, t′)ν(t′)d
√

t − t′. (37)

We wish to map this equation to a grid 0 = t0 < t1 < · · · < tN = T . To this end,
we introduce the following notation:

fk = f(tk), νk = ν(tk), Kk,l = K(tk, tl), Δk,l = tk − tl. (38)

Then, the right-hand side of Eq. (37) can be approximated by the trapezoidal
rule as

fk = νk +
k∑

l=1

(Kk,lνl + Kk,l−1νl−1)Πk,l = 0, (39)

where

Πk,l =
Δl,l−1

(
√

Δk,l−1 +
√

Δk,l)
, (40)
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so that

νk =

(
fk − Kk,k−1νk−1 −

k−1∑
l=1

(Kk,lνl + Kk,l−1νl−1)Πk,l

)

(1 + Kk,k

√
Δk,k−1)

. (41)

Thus, νk can be found by induction starting with ν0 = f0.
Equation (41) is the blueprint for all the subsequent numerical calculations.

3. The Structural Default Model

3.1. Preliminaries

The original, and straightforward, structural default model was introduced by Mer-
ton, Merton (1974), who assumed that default could happen only at debt maturity.
His model was extended by Black & Cox (1976) who considered the default, which
can happen at any time by introducing flat default boundary representing debt
covenants. Numerous authors expanded their model including Hyer et al. (1998),
Hull & White (2001), and Avellaneda & Zhu (2001), who considered a curvilinear
boundary whose shape can be calibrated to the market default probability. One
of the major unsolved issues with the above model was articulated by Hyer et al.
(1998), who pointed out that, unless the shape of the default boundary is very
carefully chosen, the probability of short-term default is too low. This issue was
addressed by several authors, including Finkelstein & Lardy (2001), Hilberink &
Rogers (2002), and Lipton (2002), who proposed to introduce jumps and/or uncer-
tainty to increase this probability. We show below that it is possible to calibrate
the default boundary in such a way that constant default intensity can be matched.
We emphasize that the direct problem — calculating the default probability given
the boundary — is linear (albeit relatively involved), while the inverse problem —
finding the boundary given the default probability — is nonlinear (and hence even
more involved). Additional details are given in Lipton & Kaushansky (2020b).

3.2. Formulation

We wish to find the boundary for a structural default model corresponding to a
constant default intensity η. We denote the corresponding default probability by

π(t) = 1 − e−ηt. (42)

The introduced time τ is such that the default is impossible for t < τ . Thus the
default boundary starts at t = τ . The idea is to calculate the corresponding bound-
ary b(t; τ, η), provided it exists, and then let τ → 0.

2050024-9
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It is clear that at time t = τ − 0, the transition probability is

p(τ, x) = H(τ, x), (43)

where H is the heat kernel:

H(τ, x) =
e−

x2
2τ√

2πτ
. (44)

At time t = τ , the first possibility of default occurs. For t > τ , the transition
probability satisfies the following Fokker–Planck problem:

∂

∂t
p(t, x) =

1
2

∂2

∂x2
p(t, x), b(t) ≤ x < ∞,

p(τ, x) = H(τ, x), p(t, b(t)) = 0, p(t, x → ∞) → 0.

(45)

The default probability density g(t) is given by

g(t) =
1
2

∂

∂x
p(t, b(t)). (46)

Alternatively,

π(t) = 1 −
∫ ∞

b(t)

p(t, x)dx, g(t) =
dπ(t)

dt
. (47)

3.3. Governing system of integral equations

We split p as follows:

p(t, x) = q(t, x) + r(t, x), (48)

where

∂

∂t
q(t, x) =

1
2

∂2

∂x2
q(t, x), −∞ < x < ∞,

q(τ, x) = H(τ, x)Θ(x − b(τ)), q(t, x → −∞) → 0, q(t, x → ∞) → 0,

(49)

∂

∂t
r(t, x) =

1
2

∂2

∂x2
r(t, x), b(t) ≤ x < ∞,

r(τ, x) = 0, r(t, b(t)) = −q(t, b(t)), r(t, x → ∞) → 0,

(50)

and Θ(x) is the Heaviside function. Solving Eq. (49) as a convolution of heat kernel
with the initial condition, we get

q(t, x) =
e−

x2
2t√

2πt
N

⎛
⎝

ux

t
− b(τ)
√

u

⎞
⎠, (51)
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where u = (t − τ)τ/t; see Lipton & Kaushansky (2020b). Thus

g(t) =
1
2

∂

∂x
r(t, b(t))

− H(t, b(t))
2t

⎛
⎜⎝b(t)N

⎛
⎜⎝

ub(t)
t

− b(τ)
√

u

⎞
⎟⎠− uH

(
u,

ub(t)
t

− b(τ)
)⎞⎟⎠. (52)

Accordingly, in view of the discussion in Sec. 2.2, we need to solve the following
system of integral equations:

ν(t) +
∫ t

τ

Θ(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ + H(t, b(t))N
(

ub(t) − tb(τ)
t
√

u

)
= 0,

ηe−ηt +
(

1√
2πt

+
db(t)
dt

)
ν(t) +

1
2

∫ t

τ

Φ(t, t′) + Θ2(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′

+
H(t, b(t))

2t

⎛
⎜⎝b(t)N

⎛
⎜⎝

ub(t)
t

− b(τ)
√

u

⎞
⎟⎠− uH

(
u,

ub(t)
t

− b(τ)
)⎞⎟⎠ = 0.

(53)

Alternatively, we can rewrite Eqs. (53) in integrated form as follows:

ν(t) +
∫ t

τ

Θ(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ + H(t, b(t))N
(

ub(t) − tb(τ)
t
√

u

)
= 0,

1 − e−ηt +
∫ t

τ

Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ − N

(
b(t)√

t

)
− N

( √
tb(τ)√

u(u + t)

)

+ BVN

( √
tb(τ)√

u(u + t)
,
b(t)√

t
;
√

u

u + t

)
= 0,

(54)

where BVN(·, ·; ·) is the bivariate normal distribution.
We postpone the discussion of the corresponding numerics until the next section,

where a more general case is considered.

3.4. The choice of bτ

Recall that the default probability has the form

π(t) = 1 − e−ηt. (55)

The barrier has to start at τ = τ̂ , τ̂ → 0, and there should be no barrier before
that. We wish to find b(τ̂) such that

π(τ̂ ) = 1 −
∫ ∞

b(τ̂)

exp
(
−x2

2τ̂

)
√

2πτ̂
dx = 1 − N

(
−b(τ̂)√

τ̂

)
= 1 − e−ητ̂ . (56)
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Thus,

N

(
−b(τ̂)√

τ̂

)
= e−ητ̂ , (57)

and

b(τ̂) = −
√

τ̂N−1(e−ητ̂ ). (58)

Now,

N−1(y) ∼
y→1

√
2f(η), (59)

where

η = −ln(2
√

π(1 − y)), f(η) = η − ln η

2
+

ln η − 2
4η

+
(ln η)2 − 6 ln η + 14

16η2
,

(60)

so that

b(τ̂ ) = −
√

2τ̂f(−ln(2
√

π(1 − e−ητ̂ ))) ≈ −
√

2τ̂ ln
(

1
2
√

πητ̂

)
. (61)

3.5. Default boundaries

Default boundaries calibrated to several representative values of η are shown in
Fig. 1.

We show that solutions of Eqs. (53) and (54) coincide modulo numerical error
in Fig. 2.

3.6. Main conjecture

Conjecture. For a given time interval I(T ) = [0, T ], there exists a parameter inter-
val I(η)(T ) = [0, η∗(T )] such that for any η ∈ I(η)(T ), the default boundary b(t) can
be calibrated to the default intensity η. We can construct the corresponding boundary
as follows:

b(t; η) = lim
τ→0

b(t; τ, η), 0 < t ≤ T, (62)

where b(t; τ, η) is found by solving either Eqs. (53) or (54).

We illustrate our conjecture in Fig. 3.
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(a)

(b)

Fig. 1. In panels (a) and (b), we show the default boundaries for several representative values of
the default intensity η. We choose τ = 0.01. In panel (a), we choose 0.01 < t < 10.0 to capture
their overall behavior; in panel (b), we choose 0.01 < t < 0.1 so that small features can be shown.

4. Mean-Field Banking System

4.1. Preliminaries

No bank is an island — they operate as a group. Tangible links between banks
manifest themselves via interbank loans; intangible links are manifold — overall
sentiment, ease of doing business, and others. Hence, to build a meaningful struc-
tural default model for a bank, one needs to take into account this bank’s inter-
actions with all the banks whom it lends to or borrows from. Eisenberg and Noe
developed a Merton-like model of the bank default (default can happen only at
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Fig. 2. Here we choose the default intensity η = 0.09 and show that boundaries calculated by
solving Eqs. (53) and (54) coincide modulo numerical errors.

maturity) in a seminal paper Eisenberg & Noe (2001). The present author extended
the Eisenberg–Noe model to the Black–Cox setting (default can happen at any
time before maturity provided that debt covenants are violated); see Lipton (2016).
Lipton’s work was subsequently generalized in Itkin & Lipton (2015) and Itkin
& Lipton (2017). Recently, several authors considered the interconnected banking
system in the mean-field framework and studied a representative bank; see Hambly

(a)

Fig. 3. Here we choose the default intensity η = 0.05 and illustrate our main conjecture numerically
by constructing three boundaries corresponding to τ = 0.01, 0.001, and 0.0005, respectively. It is
clear that after a short initial period, these boundaries begin to overlap.
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(b)

(c)

Fig. 3. (Continued)

et al. (2018), Ichiba et al. (2018), Kaushansky & Reisinger (2019), and Nadtochiy
& Shkolnikov (2017, 2018) among many others. In this section, we also use the
mean-field approach. Additional details are given in Lipton et al. (2019).

4.2. Interconnected banking system

We follow Lipton (2016) and assume that the dynamics of bank i’s total external
assets is governed by

dAi
t

Ai
t

= μi dt + σi dW i
t , (63)
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where W i are independent standard Brownian motions for 1 ≤ i ≤ n, and the
liabilities, both external Li and mutual Lij , are constant.

Bank i is assumed to default when its assets fall below a certain threshold
determined by its liabilities, namely at time τi = inf{t : Ai

t ≤ Λi
t}, where Λi is a

default boundary which we now work out. At time t = 0,

Λi
0 = Ri

⎛
⎝Li +

∑
j �=i

Lij

⎞
⎠−

∑
j �=i

Lji, (64)

where Ri is the recovery rate of bank i. If bank k defaults at time t, the default
boundary of bank i jumps by ΔΛi

t = (1 − RiRk)Lki.

The distance to default Y i
t = log(Ai

t/Λi
t)/σ has the following dynamics:

Y i
t = Y i

0 +
(

μ − σ2

2

)
t + W i

t − 1
σ

log

⎛
⎝1 +

γ

N

∑
k �=i

(1 − R2)
1
Λ0

1{τk≤t}

⎞
⎠, (65)

or, approximately,

Y i
t = Y 0

t +
(

μ − σ2

2

)
t + W i

t − γ(1 − R2)
σΛ0

LN
t , (66)

where

LN
t =

1
N

∑
k

1{τk≤t}. (67)

In the limit for N → ∞, all Y i
t have the same dynamics:

Yt = Y0 + Wt − αLt,

Lt = P(τ ≤ t), τ = inf{t ∈ [0, T ] : Yt ≤ 0},
(68)

where α = γ(1−R2)/σΛ0 characterizes the strength of interbank interactions. Thus,
we are dealing with a mean-field problem — the behavior of a representative bank
depends on the behavior of all other banks, and all of them have the same dynamics.
Hence, the problem in question is nonlinear.

We follow Lipton et al. (2019) and write the increasing process L as

αLt = −
∫ t

0

μ(t′) dt′ = −M(t), (69)

for some negative μ, so that p satisfies

∂

∂t
p(t, x; z) = −μ(t)

∂

∂x
p(t, x; z) +

1
2

∂2

∂x2
p(t, x; z), 0 ≤ x < ∞,

p(0, x; z) = δz(x), p(t, 0; z) = 0, p(t, x → ∞) → 0.

(70)

As we already know,

g(t; z) ≡ dLt

dt
=

1
2
px(t, 0; z), (71)
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so that Eqs. (70) can be written in the self-consistent form

∂

∂t
p(t, x; z) =

α

2
∂

∂x
p(t, 0; z)

∂

∂x
p(t, x; z) +

1
2

∂2

∂x2
p(t, x; z), 0 ≤ x < ∞,

p(0, x; z) = δz(x), p(t, 0; z) = 0, p(t, x → ∞) → 0.

(72)

The change of variables (t, x) → (t, y) = (t, x−M(t)) yields the familiar initial–
boundary-value problem (IBVP):

∂

∂t
p(t, y) =

1
2
pyy(t, y), 0 ≤ y < ∞,

p(0, y) = δz(y), p(t,−M(t)) = 0, p(t, y → ∞) → 0.

(73)

As before, we split p in two parts,

p(t, y) = H(t, y) + r(t, y), (74)

where H(t, y) is the standard heat kernel, while r is the solution of the following
problem:

∂

∂t
r(t, y) =

1
2

∂2

∂y2
r(t, y), 0 ≤ y < ∞,

r(0, y) = 0, r(t,−M(t)) = −
exp

(
− (M(t) + z)2

2t

)
√

2πt
, r(t, y → ∞) → 0.

(75)

4.3. Governing system of integral equations

Using our standard approach, we obtain the following system of nonlinear Volterra
integral equations:

ν(t) +
∫ t

0

Θ(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ + H(t, tΘ(t, 0) − z) = 0,

μ(t) +
(

1√
2πt

+ αμ(t)
)

ν(t)

+
1
2

∫ t

0

Φ(t, t′) + Θ2(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ +
(tΘ(t, 0) − z)H(t, tΘ(t, 0) − z)

2t
= 0,

(76)

where

Θ(t, t′) =
α
∫ t

t′ μ(t′′)dt′′

(t − t′)
, Ξ(t, t′) = e−

(t−t′)Θ2(t,t′)
2 ,

Φ(t, t′) =
(ν(t) − Ξ(t, t′)ν(t′))

(t − t′)
,

Θ(t, t) = αμ(t), Ξ(t, t) = 1, Φ(t, t) = ν′(t) +
1
2
α2μ2(t)ν(t).
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4.4. Numerical solution

In the spirit of Eq. (39), we get the following approximation for Eqs. (76) for k > 0:

νk +
1√
2π

k∑
l=1

(P (1)
k,l νl + P

(1)
k,l−1νl−1)Πk,l + ϑk = 0,

μk +

(
1√

2πΔk,0

+ αμk

)
νk +

1
2
√

2π

k∑
l=1

× (Φk,l + Φk,l−1 + P
(2)
k,l νl + P

(2)
k,l−1νl−1)Πk,l + ιk = 0.

(77)

Here and below we use the following notation:

Θk,l = α

k∑
i=l+1

(μi + μi−1)Δi,i−1

2Δk,l
, P

(i)
k,l = Θi

k,le
−Δk,lΘ

2
k,l

2 ,

Qk,l = P
(2)
k,l − P

(0)
k,l

Δk,l
, Φk,l =

νk − P
(0)
k,l νk−1

Δk,l
, k > l,

Θk,k = αμk, P
(i)
k,k = αiμi

k, Qk,k undefined,

Φk,k =
νk − νk−1

Δk,k−1
+

1
2
α2μ2

kνk,

ϑk = H(Δk,0, Δk,0Θk,0 − z), ιk =
(Δk,0Θk,0 − z)ϑk

2Δk,0
, k > 0.

(78)

For k = 0, we have

(ν0, μ0) = (0, 0).

For k = 1, we have

ν1 = −
H

(
Δ1,0,

Δ1,0αμ1

2
− z

)
(

1 +

√
Δ1,0

2π
αμ1

) ,

μ1 −

⎛
⎜⎜⎜⎜⎝

(
1√

2πΔ1,0

+ αμ1 +
α2μ2

1

2
√

2πΔ1,0

)
(

1 +

√
Δ1,0

2π
αμ1

) −

(
Δ1,0αμ1

2
− z

)
2Δ1,0

⎞
⎟⎟⎟⎟⎠H

×
(

Δ1,0,
Δ1,0αμ1

2
− z

)
= 0,

(79)
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where the nonlinear equation for μ1 has to be solved by the Newton–Raphson
method.

For k > 1, we have(
1 +

√
Δk,k−1

2π
αμk

)
νk +

√
Δk,k−1

2π
P

(1)
k,k−1νk−1

+
1√
2π

k−1∑
l=1

(P (1)
k,l νl + P

(1)
k,l−1νl−1)Πk,l + ϑk = 0,

μk +

(
1√

2πΔk,0

+ αμk +
α2μ2

k

2
√

2πΔk,k−1

+
1

2
√

2π

k−1∑
l=1

(Δk,l + Δk,l−1)Πk,l

Δk,lΔk,l−1

)
νk

+
1
2

√
Δk,k−1

2π
Qk,k−1νk−1 +

1
2
√

2π

k−1∑
l=1

(Qk,lνl + Qk,l−1νl−1)Πk,l + ιk = 0.

(80)

Assuming that (ν1, μ1), . . . , (νk−1, μk−1) are known, we can express νk in terms
of μk:

νk = −

(√
Δk,k−1

2π
P

(1)
k,k−1νk−1 +

1√
2π

k−1∑
l=1

(P (1)
k,l νl + P

(1)
k,l−1νl−1)Πk,l + ϑk

)
(

1 +

√
Δk,k−1

2π
αμk

) ,

(81)
and obtain a nonlinear equation for μk:

μk −

(
1√

2πΔk,0

+ αμk +
α2μ2

k

2
√

2πΔk,k−1

+
1

2
√

2π

k−1∑
l=1

(Δk,l + Δk,l−1)Πk,l

Δk,lΔk,l−1

)
(

1 +

√
Δk,k−1

2π
αμk

)

×
(√

Δk,k−1

2π
P

(1)
k,k−1νk−1 +

1√
2π

k−1∑
l=1

(P (1)
k,l νl + P

(1)
k,l−1νl−1)Πk,l + ϑk

)

+
(Qk,k−1Δk,k−1 − 1)νk−1

2
√

2πΔk,k−1

+
1

2
√

2π

k−1∑
l=1

(Qk,lνl + Qk,l−1νl−1)Πk,l + ιk = 0,

(82)

which again is solved by the Newton–Raphson method.
In Fig. 4, we show the cumulative loss probability for several representative

values of α.
A striking feature of this figure is the “phase transition” occurring at α ≈ 1.0,

when the default after a finite time becomes inevitable. By contrast, for α = 0, the
default probability reaches unity only asymptotically when t → ∞.
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Fig. 4. Here we demonstrate the loss probability for the initial position z = 0.5 and several
representative values of α, which characterizes the strength of interbank interactions.

We notice that for α = 0, μ(t), ν(t) can be calculated analytically. For bench-
marking purposes, we compare numerical and analytical results in Figs. 5(a) and
5(b). As usual, the efficiency of the Newton–Raphson method, which is illustrated
in Fig. 5(c), is nothing short of miraculous.

(a)

Fig. 5. In panels (a) and (b), we choose z = 0.5, α = 0, and we show μ(t) and ν(t) calculated
numerically and analytically. In panel (c), we choose z = 0.5, α = 0.6, and we show the error
generated by the Newton–Raphson method.

2050024-20



2nd Reading

June 20, 2020 8:27 WSPC/S0219-0249 104-IJTAF SPI-J071 2050024

Old Problems, Classical Methods, New Solutions

(b)

(c)

Fig. 5. (Continued)

In Fig. 6, we represent shifted probability density surfaces p(t, x− z; z) for rep-
resentative values of α used in Fig. 4.

The shift is made in order to make the connection with Sec. 3 more transparent;
after this shift all the processes start at zero and the boundaries are given by
b = −0.5.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. In panels (a)–(f), we show the probability density function p(t, x−z; z). We shift the domain
down by −z in order to make the comparison with the structural default model considered in Sec. 3
more transparent. In panels (a) and (b), we show the analytical and numerical results for α = 0.
In panels (c)–(f), we show the numerical results for α = 0.2, 0.4, 0.6, and 0.8, respectively.

5. Hitting Time Probability Distribution for an
Ornstein–Uhlenbeck Process

5.1. Preliminaries

In a seminal paper, Fortet (1943) developed an original approach to calculating
probability distribution of the hitting time for a diffusion process. Fortet’s equation
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can be viewed as a variant of the Einstein–von Smoluchowski equation (Einstein
1905, von Smoluchowski 1906). A general overview can be found in Borodin &
Salminen (2012) and Breiman (1967).

Numerous attempts to find an analytical result for the Ornstein–Uhlenbeck pro-
cess have been made since 1998 when Leblanc & Scaillet (1998) first derived an ana-
lytical formula, which contained a mistake. Two years later, Leblanc et al. (2000)
published a correction on the paper; unfortunately, the correction was erroneous as
well, as was shown by Göing-Jaeschke & Yor (2003).

Several authors used the Laplace transform to find a formal semi-analytical
solution (Alili et al. 2005, Linetsky 2004, Ricciardi & Sato 1988).

In this section, we use the EMHP to calculate the distribution of the hitting time
for an OU process. Our approach is semi-analytical and can handle both constant
and time-dependent parameters. It is worth noting that the latter case cannot be
solved using the Laplace transform method. Additional information can be found
in Lipton & Kaushansky (2020a).

5.2. Main equations

To calculate the density g(t, z) of the hitting time probability distribution, we need
to solve the following forward problem:

∂

∂t
p(t, x; z) = p(t, x; z) + x

∂

∂x
p(t, x; z) +

1
2

∂2

∂x2
p(t, x; z),

p(0, x; z) = δz(x), p(t, b(t); z) = 0, p(t, x; z → ∞) → 0.

(83)

This distribution is given by

g(t, z) =
1
2

∂

∂x
p(t, b; z). (84)

5.3. Particular case, b = 0

Before solving the general problem via the EMHP, let us consider a particular case
of b = 0. Green’s function for the OU process in question has the form

G(t, x; z) = etH(η(t), etx − z), (85)

where

η(t) =
e2t − 1

2
= et sinh(t). (86)

Since b = 0, the method of images works, so that

p(t, x; z) = etH(η(t), etx − z) − etH(η(t), etx + z),
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g(t) =
1
2

∂

∂x
p(t, 0) =

ze2tH(η(t),−z)
η(t)

,

G(t) =
∫ t

0

g(t′)dt′ = 2N

(
− z√

η(t)

)
.

(87)

This result is useful for benchmarking purposes.

5.4. General case

To be concrete, consider the case z > b(0). We wish to transform the IBVP (83)
into the standard IBVP for a heat equation with a moving boundary. To this end,
we introduce new independent and dependent variables as follows:

q(τ, ξ) = e−tp(t, x), τ = η(t), ξ = etx,

p(t, x) =
√

1 + 2τq(τ, ξ), t = ln(
√

1 + 2τ), x =
ξ√

1 + 2τ
,

(88)

and get the IBVP of the form

∂

∂τ
q(τ, ξ) =

1
2

∂2

∂ξ2
q(τ, ξ), β(τ) ≤ ξ < ∞,

q(0, ξ) = δz(ξ), q(τ, β(τ)) = 0, q(τ, ξ → ∞) → 0.

(89)

Here

β(τ) =
√

1 + 2τ b̃(ln(
√

1 + 2τ)). (90)

5.5. The governing system of integral equations

The corresponding system of Volterra integral equations has the form

ν(τ) +
∫ τ

0

Θ(τ, τ ′)Ξ(τ, τ ′)ν(τ ′)√
2π(τ − τ ′)

dτ ′ + H(τ, β(τ) − z) = 0,

μ(τ) +
(

1√
2πτ

+ β′(τ)
)

ν(τ) +
1
2

∫ τ

0

Φ(τ, τ ′) + Θ2(τ, τ ′)Ξ(τ, τ ′)ν(τ ′)√
2π(τ − τ ′)

dτ ′

+
(β(τ) − z)H(τ, β(τ) − z)

2τ
= 0,

(91)
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where

μ(τ) = (1 + 2τ)g(ln(
√

1 + 2τ)). (92)

This system is linear, so that μ(τ) is expressed in terms of ν(τ) directly and there
is no need to use the Newton–Raphson method.

5.6. Flat boundary

Assuming that the boundary is flat, we can simplify Eqs. (91) somewhat. We notice
that

β(τ) − β(τ ′)
τ − τ ′ =

2b√
1 + 2τ +

√
1 + 2τ ′ , (93)

so we introduce

θ =
√

1 + 2τ − 1, θ′ =
√

1 + 2τ ′ − 1, 0 ≤ θ′ ≤ θ < ∞, (94)

and write the first equation of (91) in the form

ν(θ) +
2b√
π

∫ θ

0

exp
(
− b2(θ − θ′)

(2 + θ + θ′)

)
(1 + θ′)ν(θ′)√

(2 + θ + θ′)3(θ − θ′)
dθ′ +

e
− ((1+θ)b−z)2

((1+θ)2−1)√
π((1 + θ)2 − 1)

= 0.

(95)

Provided that ν(θ) is known, we can represent g(t) in the form

g(t) = −
(etb − z) exp

(
− (etb − z)2

(e2t − 1)
+ 2t

)
√

π(e2t − 1)3
−
(

etb +
e2t√

π(e2t − 1)

)
ν(t) +

1√
π

e2t

×
∫ θ

0

((
1− 2b2 (θ− θ′)

(2 + θ + θ′)

)
exp
(
−b2 (θ− θ′)

(2 + θ + θ′)

)
ν(θ′)− ν(θ)

)
(1 + θ′)√

(2 + θ + θ′)3(θ− θ′)3
dθ′.

(96)

It is worth noting that the analytical solution is available in two cases: (a) when
b = 0 the solution can be found by using the method of images and (b) when
b(t) = Ae−t + Bet, the boundary transforms into a linear boundary 2Bτ + A + B,
which can be treated by the method of images as well.

We show the probability density function (pdf) and the cumulative density func-
tion (cdf) for the hitting time in Fig. 7. It is interesting to note that the undulation
of the boundary causes considerable variations in the pdfs, which are naturally less
pronounced for the corresponding cdfs.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. In panels (a)–(f), we show the pdf and cdf for the hitting time probability distribution.
In panels (a) and (b), z = 2 and b(t) = 0, so that both the numerical and analytical expressions
are available. These expressions are in perfect agreement. In panels (c) and (d), z = 2, b(t) = 0,
and b(t) = 0.2 sin(10.0t). In panels (e) and (f), z = 2, b(t) = 1.0, and b(t) = 1.0 + 0.2 sin(10.0t).
Variations in the pdf caused by the barrier undulations are astonishingly profound.
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5.7. Abel integral equation

Consider Eq. (95), which we got for the standard OU process. For small values of
θ, this equation can be approximated by an Abel integral equation of the second
kind,

ν(θ) +
b√
2π

∫ θ

0

1√
θ − θ′

ν(θ′)dθ′ + H(θ, b − z) = 0. (97)

This equation can be solved analytically using direct–inverse Laplace transforms.
The direct Laplace transform yields

ν̄(Λ) + b
ν̄(Λ)√

2Λ
+

e−
√

2Λ(z−b)

√
2Λ

= 0. (98)

Then, ν̄(Λ) can be expressed as

ν̄(Λ) = −e−
√

2Λ(z−b)

√
2Λ + b

. (99)

Taking the inverse Laplace transform, we get the final expression for ν(θ),

ν(θ) = be
b2
2 θ+b(z−b)N

(
−bθ + z − b√

θ

)
−

exp
(
− (b − z)2

2θ

)
√

2πθ
. (100)

Alternatively, one can represent an analytical solution of an Abel equation,

y(t) + ξ

∫ t

0

y(s)ds√
t − s

= f(t), (101)

in the form

y(t) = F (t) + πξ2

∫ t

0

exp[πξ2(t − s)]F (s)ds, (102)

where

F (t) = f(t) − ξ

∫ t

0

f(s)ds√
t − s

, (103)

see Polyanin & Manzhirov (1998).
Abel equations naturally arise in many financial mathematics situations, mainly,

when fractional differentiation is involved, see e.g. Andersen & Lipton (2013).

6. The Supercooled Stefan Problem

Here and in Sec. 7, we deal with relatively rare instances when the financial mathe-
matics results can be successfully used in the broader applied mathematics context
rather than the other way around.

The Stefan problem is of great theoretical and practical interest, see e.g.
(Kamenomostskaja 1961, Rubinstein 1971, Delarue et al. 2019) and references
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therein. The classical Stefan problem studies the evolving boundary between the
two phases of the same medium, such as ice and water. Thus, this problem boils
down to solving the heat equation with a free boundary, which is determined by
a matching condition. The main equations for the supercooled Stefan problem are
very similar to the mean-field banking equations:

∂

∂t
p(t, x) =

1
2

∂2

∂x2
p(t, x), b(t) ≤ x < ∞,

p(0, x) = δz(x), p(t, b(t)) = 0, p(t, X → ∞) → 0,

(104)

where p is the negative temperature profile, and b is the liquid–solid boundary. The
location of the boundary is determined by the matching condition

d

dt
b(t) =

α

2
∂

∂x
p(t, x). (105)

As usual, we represent p as p = H + r, where r solves the following IBVP:

∂

∂t
r(t, x) =

1
2

∂2

∂x2
r(t, x), b(t) ≤ x < ∞,

r(0, x) = 0, r(t, b(t)) = −H(t, b(t) − z), r(t, X → ∞) → 0.

(106)

By using Eq. (20), we get the following system of coupled Volterra equations:

ν(t′) +
∫ t

0

Θ(t, t′)Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ + H(t, b(t) − z) = 0,

b(t) +
α

2

∫ t

0

Ξ(t, t′)ν(t′)√
2π(t − t′)

dt′ = 0,

(107)

Fig. 8. Here we show the solid–liquid boundaries b(t) for several representative values of α.
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where

Θ(t, t′) =
b(t) − b(t′)

(t − t′)
, Ξ(t, t′) = e−

(t−t′)Θ2(t,t′)
2 , Θ(t, t) =

db(t)
dt

, Ξ(t, t) = 1.

(108)

System of integral equations (107) is very similar to the system (54) and can be
solved by the same token.

In Fig. 8, we show b(t) for several representative values of α.

7. The Integrate-and-Fire Neuron Excitation Model

7.1. Governing equations

We briefly describe the famous integrate-and-fire model in neuroscience, see e.g.
Lewis & Rinzel (2003), Ostojic et al. (2009) and Carrillo et al. (2013). The integrate-
and-fire model is a mathematical description of the properties of specific cells (spik-
ing neurons) in the nervous system generating sharp electrical potentials across their
cell membrane. These spikes last roughly for 1 ms. Spiking neurons are a significant
signaling unit of the nervous system as a whole, so understanding their operation
is of great theoretical and practical importance.

The neuron excitation problem has the form

∂

∂t
p(t, x) =

∂

∂x
((x − μ(t))p(t, x)) +

1
2

∂2

∂x2
p(t, x) + λ(t)δX0 (x), −∞ < x ≤ 0,

p(0, x) = p0(x), p(t,−∞) = 0, p(t, 0) = 0,

X0 < 0, λ(t) = −1
2

∂

∂x
p(t, 0), μ(t) = m0 + m1λ(t),

(109)

where p(t, x) > 0 is the probability density of finding neurons at a voltage x.
Without loss of generality, we choose

p0(x) = δξ(x), ξ < 0. (110)

Equations (109) preserve probability in the sense that

d

dt

∫ 0

−∞
p(t, x)dx = 0. (111)

Indeed, integration of the main equation yields

d

dt

∫ 0

−∞
p(t, x)dx =

∫ 0

−∞

∂

∂t
p(t, x)dx

=
∫ 0

−∞

(
∂

∂x
((x − μ(t))p(t, x)) +

1
2

∂2

∂x2
p(t, x) + λ(t)δX0 (x)

)
dx

=
1
2

∂

∂x
p(t, 0) + λ(t) = 0. (112)
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7.2. The stationary problem

Because the integrate-and-fire equations are probability-preserving, there exists a
stationary solution, which solves the time-independent Fokker–Planck problem

0 =
∂

∂x
((x − μ)p(x)) +

1
2

∂2

∂x2
p(x) + λδX0(x),

p(−∞) = 0, p(0) = 0, −∞ < x ≤ 0,

λ = −1
2

∂

∂x
p(0), μ = m0 + m1λ.

(113)

We represent p(x) in the form

p(x) = p<(x)(1 − Θ(x − X0)) + p>(x)Θ(x − X0), (114)

where Θ(·) is the Heaviside function, and notice that

p<(X0) = p>(X0) ≡ ν,

1
2

(
∂

∂x
p>(X0) − ∂

∂x
p<(X0)

)
= −λ,

(115)

where ν, λ are unknown constants, which have to be determined as part of the
solution. In view of the boundary conditions, it is clear that

(x − μ)p>(x) +
1
2

∂

∂x
p>(x) = c> ≡ −λ,

(x − μ)p<(x) +
1
2

∂

∂x
p<(x) = c< ≡ 0.

(116)

Moreover, since p is continuous at x = X0, the second matching condition (115) is
satisfied automatically.

The method of separation of variables yields

p<(x) = νe(X0−μ)2−(x−μ)2 , (117)

while the method of variation of constants yields

p>(x) = 2λ(eμ2−(x−μ)2D(−μ) − D(x − μ)), (118)

where D(·) is Dawson’s integral,

D(x) = e−x2
∫ x

0

ey2
dy. (119)

Thus,

ν = 2λ(eμ2−(X0−μ)2D(−μ) − D(X0 − μ)), (120)
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and

p<(x) = 2λ(eμ2
D(−μ) − e(X0−μ)2D(X0 − μ))e−(x−μ)2 . (121)

At the same time, in the stationary case, the probability density p(x) has to
integrate to unity:∫ 0

−∞
p(x)dx =

∫ X0

−∞
p<(x)dx +

∫ 0

X0

p>(x)dx = 1, (122)

which is a nonlinear equation for λ, because both μ and ν are known functions of λ.
Once this equation is solved numerically, the entire profile is determined. It is worth
noting that the integral

∫X0

−∞ p<(x)dx can be computed analytically:

∫ X0

−∞
p<(x)dx = ν

∫ X0

−∞
e(X0−μ)2−(x−μ)2dx

=
√

πνe(X0−μ)2N(
√

2(X0 − μ)), (123)

while the second integral
∫ 0

X0
p>(x)dx can be split into two parts, the first of which

can be computed analytically, and the second one has to be computed numerically:∫ 0

X0

2λ(e−x(x−2μ)D(−μ) − D(x − μ))dx

= 2λ

(√
πeμ2

(N(−√
2μ) − N(

√
2(X0 − μ)))D(−μ) −

∫ −μ

X0−μ

D(x)dx

)
.

(124)

Thus, the corresponding nonlinear equation for λ can be written as
√

π(eμ2
N(−

√
2μ)D(−μ) − e(X0−μ)2N(

√
2(X0 − μ))D(X0 − μ))

−
∫ −μ

X0−μ

D(x)dx − 1
2λ

= 0. (125)

We show the stationary profile p(x) and its derivative dp(x)/dx in Fig. 9. As
expected, dp(x)/dx jump down at x = X0.

7.3. The nonstationary problem

First, we use the following transformation of variables:

t = t, y = x − M(t), M(0) = 0,

∂

∂t
=

∂

∂t
− M ′(t)

∂

∂y
,

∂

∂x
=

∂

∂y
,

(126)
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(a)

(b)

Fig. 9. In panels (a) and (b), we show the stationary distribution p(x) and its derivative dp(x)/dx
for the following parameter values: X0 = −1, m0 = 0.5, and m1 = 0.1. The corresponding value
of λ, which is computed as part of the solution, is 1.4002.

and get the following IBVP:

∂

∂t
p(t, y) =

∂

∂y
((y + M ′(t) + M(t) − μ(t))p(t, y)) +

1
2

∂2

∂y2
p(t, y)

+ λ(t)δX0−M(t)(x), ∞ < y ≤ −M(t),

p(0, y) = δξ(y), p(t,−∞) = 0, p(t,−M(t)) = 0,

λ(t) = −1
2

∂

∂y
p(t,−M(t)), μ(t) = m0 + m1λ(t).

(127)
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Thus, by choosing M in such a way that

M ′(t) + M(t) − μ(t) = 0, M(0) = 0, (128)

or, explicitly,

M(t) =
∫ t

0

e−(t−t′)μ(t′)dt′, (129)

we get the IBVP for the standard Ornstein–Uhlenbeck process:

∂

∂t
p(t, y) =

∂

∂y
(yp(t, y)) +

1
2

∂2

∂y2
p(t, y) + λ(t)δX0−M(t)(x), ∞ < y ≤ −M(t),

p(0, y) = δξ(y), p(t,−∞) = 0, p(t,−M(t)) = 0,

λ(t) = −1
2

∂

∂y
p(t,−M(t)), μ(t) = m0 + m1λ(t).

(130)

As usual, we split p(t, x) as follows:

p(t, x) = etH(η(t), ety − ξ) + r(t, x), (131)

where the first term solves the governing equation and satisfies the initial, but not
the boundary conditions, while r(t, x) solves the following IBVP:

∂

∂t
r(t, y) =

∂

∂y
(yr(t, y)) +

1
2

∂2

∂y2
r(t, y) + λ(t)δX0−M(t)(x), ∞ < y ≤ −M(t),

r(0, y) = 0, r(t,−∞) = 0, r(t,−M(t)) = χ0(t),

λ(t) = −1
2

∂

∂y
r(t,−M(t)) + χ1(t), μ(t) = m0 + m1λ(t),

(132)

where

χ0(t) = −etH(η(t), etM(t) + ξ),

χ1(t) = −e2t(etM(t) + ξ)
2η(t)

H(η(t), etM(t) + ξ).
(133)

We apply the familiar change of variables (88) and get the following IBVP for
q(τ, θ) = e−tr(t, y):

∂

∂τ
q(τ, θ) =

1
2

∂2

∂θ2
q(t, θ) + κ(τ)δX0−M(t)(x), ∞ < θ ≤ Γ(τ),

q(0, θ) = 0, q(τ,−∞) = 0, q(τ, Γ(τ)) = �0(τ),

κ(τ) = − (1 + 2τ)
2

∂

∂θ
q(τ, Γ(τ)) + �1(τ),

(134)
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where

Γ0(τ) =
√

1 + 2τ(X0 − M(ln(
√

1 + 2τ))),

Γ(τ) = −√
1 + 2τM(ln(

√
1 + 2τ)),

�0(τ) = −H(τ, Γ(τ) − ξ),

�1(τ) =
(Γ(τ) − ξ)

2τ
H(η(t), Γ(τ) − ξ).

(135)

Denoting q(τ, Γ0(τ)) by ν(τ), we can split the IBVP (134) into two IBVPs:

∂

∂τ
q>(τ, θ) =

1
2

∂2

∂θ2
q>(t, θ), Γ0(τ) ≤ θ ≤ Γ(τ),

q>(0, θ) = 0, q(τ, Γ0(τ)) = ν(τ), q(τ, Γ(τ)) = �0(τ),
(136)

∂

∂τ
q<(τ, θ) =

1
2

∂2

∂θ2
q<(t, θ), ∞ < θ ≤ Γ0(τ),

q<(0, θ) = 0, q(τ, θ → −∞) → 0, q(τ, Γ0(τ)) = ν(τ),
(137)

and a matching condition:

∂

∂θ
q<(t, Γ0(τ)) − ∂

∂θ
q>(t, Γ0(τ)) = 2

(
− (1 + 2τ)

2
∂

∂θ
q>(τ, Γ(τ)) + �1(τ)

)
.

(138)

We can now use the results from Sec. 2 to reduce these equations to a very efficient
(but highly nonlinear) system of Volterra integral equations. An analysis of the
corresponding system will be presented elsewhere.

8. Conclusions

In this paper, we have described an analytical framework for solving several relevant
and exciting problems of financial engineering. We have shown that the EMHP is
a powerful tool for reducing partial differential equations to integral equations of
Volterra type. Due to their unique nature, these equations are relatively easy to
solve. In some cases, we can solve these equations analytically by judiciously using
the Laplace transform. In other cases, we can solve them numerically by constricting
highly accurate numerical quadratures. We have demonstrated that the EMHP has
numerous applications in mathematical finance and far beyond its confines.
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